Journal of Nonlinear Mathematical Physics
Volume 11, Issue Supplement 1, October 2004
Geometrical Methods in Physics: Bialowieza XXI and XXII. Proceedings of the XXI and XXII Workshops on Geometrical Methods in Physics
June/July 2002 and 2003 Bialowieza, Poland
Review Article
3. So. . . what was the question?
Gérard G. Emch
Pages: 1 - 8
An overview of the lectures at the 2002 Bialowiea Workshop is presented. The symbol* after a proper name indicates that a copy of the corresponding contribution to the proceedings was communicated to the author of this summary.
Research Article
4. Regularization and Renormalization of Quantum Field Theories on Noncommutative Spaces
Harald Grosse, Raimar Wulkenhaar
Pages: 9 - 20
We first review regularization methods based on matrix geometry which provide an ultraviolet cut-off for scalar fields respecting the symmetries. Sections of bundles over the sphere can be quantized, too. This procedure even allows to regularize supesymmetry without violating it. Recently, this work...
Research Article
5. On the Resolution of Space-Time Singularities II
M. Maceda, J. Madore
Pages: 21 - 36
Research Article
6. On Pauli graded contractions of sl(3, C)
Miloslav Havlicek, Jiri Patera, Edita Pelantova, Jiri Tolar
Pages: 37 - 42
We consider a special fine grading of sl(3, C), where the grading subspaces are geerated by 3 × 3 generalized Pauli matrices. This fine grading decomposes sl(3, C) into eight onedimensional subspaces. Our aim is to find all contractions of sl(3, C) which preserve this grading. We have found that the...
Research Article
7. On Poisson Realizations of Transitive Lie Algebroids
Yuri Vorobiev
Pages: 43 - 48
We show that every transitive Lie algebroid over a connected symplectic manifold comes from an intrinsic Lie algebroid of a symplectic leaf of a certain Poisson structure. The reconstruction of the corresponding Poisson structures from the Lie algebroid is given in terms of coupling tensors.
Research Article
8. Deformation quantization for almost-Kähler manifolds
Martin Schlichenmaier
Pages: 49 - 54
On an arbitrary almost-Kähler manifold, starting from a natural affine connection with nontrivial torsion which respects the almost-Kähler structure, in joint work with A. Karabegov a Fedosov-type deformation quantization on this manifold was costructed. This contribution reports on the result and supplies...
Research Article
9. New Geometrical Applications of the Elliptic Integrals: The Mylar Balloon
Ivaïlo M. Mladenov
Pages: 55 - 65
An explicit parameterization in terms of elliptic integrals (functions) for the Mylar balloon is found which then is used to calculate various geometric quantities as well as to study all kinds of geodesics on this surface.
Research Article
10. von Neumann Quantization of Aharonov-Bohm Operator with Interaction: Scattering Theory, Spectral and Resonance Properties
Gilbert Honnouvo, Mahouton Norbert Hounkonnou, Gabriel Yves Hugues
Pages: 66 - 71
Using the theory of self-adjoint extensions, we study the interaction model formally given by the Hamiltonian H + V (r), where H is the Aharonov-Bohm Hamiltonian and V (r) is the -type interaction potential on the cylinder of radius R . We give the mathematical definition of the model, the self-adjointness...
Research Article
11. Green function for Klein-Gordon-Dirac equation
Vasyl Kovalchuk
Pages: 72 - 77
The Green function for Klein-Gordon-Dirac equation is obtained. The case with the dominating Klein-Gordon term is considered. There seems to be a formal analogy between our problem and a certain problem for a 4-dimensional particle moving in the external field. The explicit relations between the wave...
Research Article
12. Reducible representations of CAR and CCR with possible applications to field quantization
Marek Czachor
Pages: 78 - 84
Reducible representations of CAR and CCR are applied to second quantization of Dirac and Maxwell fields. The resulting field operators are indeed operators and not operator-valued distributions. Examples show that the formalism may lead to a finite quantum field theory.
Research Article
13. Statistical mechanics of a Class of Anyonic Systems. The Rigorous Approach
Roman Gielerak, Robert Ralowski
Pages: 85 - 91
A class of involutive Wick algebras (called anyonic-type Wick algebras) is selected and some its elementary properties are described. In particular, the Fock representtions of the selected anyonic-type commutation relations are described. For the class of so-called r-yonic systems the question of the...
Research Article
14. When is a sum of projections equal to a scalar operator?
Yurii S. Samoǐlenko
Pages: 92 - 103
Research Article
15. EPR-B correlations: non-locality or geometry?
A.F. Kracklauer
Pages: 104 - 109
A photoelectron-by-photoelectron classical simulation of EPR-B correlations is dscribed. It is shown that this model can be made compatible with Bell's renowned "no-go" theorem by restricting the source to that which produces only what is known as paired photons.
Research Article
16. Nonlinear Wave Equation in Special Coordinates
Alexander Shermenev
Pages: 110 - 115
Some classical types of nonlinear periodic wave motion are studied in special coodinates. In the case of cylinder coordinates, the usual perturbation techniques leads to the overdetermined systems of linear algebraic equations for unknown coefficients whose compatibility is key step of the investigation....
Research Article
17. Limit Spectra of Random Gram Matrices
V.I. Serdobolskii
Pages: 116 - 121
Solutions to basic non-linear limit spectral equation for matrices RT R of increasing dmension are investigated, where R are rectangular random matrices with independent normal entries. The analytical properties of limiting normed trace for the resolvent of RT R are investigated, boundaries of limit...
Research Article
18. The Classification of the Bifurcations Emerging in the case of an Integrable Hamiltonian System with Two Degrees of Freedom when an Isoenergetic Surface is Non-Compact
Galina Goujvina
Pages: 122 - 129
On a symplectical manifold M4 consider a Hamiltonian system with two degrees of freedom, integrable with the help of an additional integral f. According to the welknown Liouville theorem, non-singular level surfaces of the integrals H and f can be represented as unions of tori, cylinders and planes....
Research Article
19. Geodetic Systems on Linear and Affine Groups. Classics and Quantization.
Jan J. Slawianowski
Pages: 130 - 137
Described are classical and quantized systems on linear and affine groups. Unlike the traditional models applied in astrophysics, nuclear physics, molecular vibrations and elasticity, our models are not only kinematically ruled by the affine group, but also their kinetic energies are affinely invariant....
Research Article
20. Action-Angle Analysis of Some Geometric Models of Internal Degrees of Freedom
Barbara Gołubowska
Pages: 138 - 144
We derive and discuss equations of motion of infinitesimal affinely-rigid body moving in Riemannian spaces. There is no concept of extended rigid and affinely rigid body in a general Riemannian space. Therefore the gyroscopes with affine degrees of freedom are described as moving bases attached to the...
Research Article
21. Hamiltonian dynamics of planar affinely-rigid body
Agnieszka Martens
Pages: 145 - 150
We discuss the dynamics of an affinely-rigid body in two dimensions. Translational degrees of freedom are neglected. The special stress is laid on completely integrable models solvable in terms of the separation of variables method.
Research Article
22. Quantization of the planar affinely-rigid body
Agnieszka Martens
Pages: 151 - 156
This paper is a continuation of [1] where the classical model was analyzed. Discussed are some quantization problems of two-dimensional affinely rigid body with the double dynamical isotropy. Considered are highly symmetric models for which the variables can be separated. Some explicit solutions are...
Research Article
23. Classical and Quantized Affine Physics: A Step towards it
Jan J. Slawianowski, Vasyl Kovalchuk
Pages: 157 - 166
The classical and quantum mechanics of systems on Lie groups and their homogeneous spaces are described. The special stress is laid on the dynamics of deformable bodies and the mutual coupling between rotations and deformations. Deformative modes are discretized, i.e., it is assumed that the relevant...
Research Article
24. A new derivation of the plane wave expansion into spherical harmonics and related Fourier transforms
Agata Bezubik, Agata Dbrowska, Aleksander Strasburger
Pages: 167 - 173
This article summarizes a new, direct approach to the determination of the expansion into spherical harmonics of the exponential ei(x|y) with x, y Rd . It is elementary in the sense that it is based on direct computations with the canonical decomposition of homogeneous polynomials into harmonic components...
Research Article
25. Wigner Quantization on the Circle and R+
G. Chadzitaskos, J. Tolar
Pages: 174 - 178
We construct a deformation quantization for two cases of configuration spaces: the multiplicative group of positive real numbers R+ and the circle S1 . In these cases we define the momenta using the Fourier transform. Using the identification of symbols of quantum observables -- real functions on the...
Research Article
26. Poisson configuration spaces, von Neumann algebras, and harmonic forms
Alexei Daletskii
Pages: 179 - 184
We give a short review of recent results on L2 -cohomology of infinite configuration spaces equipped with Poisson measures.
Research Article
27. Canonical Analysis of Symmetry Enhancement with Gauged Grassmannian Model
Sang-Ok Hahn, Phillial Oh, Cheonsoo Park, Sunyoung Shin
Pages: 185 - 190
We study the Hamiltonian structure of the gauge symmetry breaking and enhancment. After giving a general discussion of these phenomena in terms of the constrained phase space, we perform a canonical analysis of the Grassmannian nonlinear sigma model coupled with Chern-Simons term, which contains a free...
Short Communication
28. On the complexified affine metaplectic representation
Ole Rask
Pages: 191 - 193
We study exponentiability of the infinite polynomials with maximal degree 2 of cration and annihilation operators, which give a Fock Space-representation of the coplexification of the affine symplectic group.
Research Article
29. Scattering and Spectral Singularities for some Dissipative Operators of Mathematical Physics
S.A. Stepin
Pages: 194 - 203
Analogies in the spectral study of dissipative Schrödinger operator and Boltmann transport operator are analyzed. Scattering theory technique together with functional model approach are applied to construct spectral representtions for these operators.
Research Article
30. Quadratic non-Riemannian Gravity
Dmitri Vassiliev
Pages: 204 - 216
We consider spacetime to be a connected real 4-manifold equipped with a Lorentzian metric and an affine connection. The 10 independent components of the (symmetric) metric tensor and the 64 connection coefficients are the unknowns of our theory. We introduce an action which is quadratic in curvature...
Research Article
31. Geometry of differential operators, odd Laplacians, and homotopy algebras
Hovhannes Khudaverdian, Theodore Voronov
Pages: 217 - 227
We give a complete description of differential operators generating a given bracket. In particular we consider the case of Jacobi-type identities for odd operators and brackets. This is related with homotopy algebras using the derived bracket construction.
Research Article
32. The Jungle Book updated
Bogdan Mielnik
Pages: 228 - 236
Data from many sources indicate that the Earth ecological crisis might not wait till distant future. To avert it, some difficult truth must be accepted and adequate steps taken. One of them is the strict protection of the world forests, even at the cost of the short term economic growth.