Volume 11, Issue Supplement 1, October 2004, Pages 66 - 71
von Neumann Quantization of Aharonov-Bohm Operator with Interaction: Scattering Theory, Spectral and Resonance Properties
Authors
Gilbert Honnouvo, Mahouton Norbert Hounkonnou, Gabriel Yves Hugues
Corresponding Author
Gilbert Honnouvo
Available Online 1 October 2004.
- DOI
- 10.2991/jnmp.2004.11.s1.8How to use a DOI?
- Abstract
Using the theory of self-adjoint extensions, we study the interaction model formally given by the Hamiltonian H + V (r), where H is the Aharonov-Bohm Hamiltonian and V (r) is the -type interaction potential on the cylinder of radius R . We give the mathematical definition of the model, the self-adjointness of the Hamiltonian and prvide relevant spectral properties, results for resonance effects and stationary scattering characteristics.
- Copyright
- © 2006, the Authors. Published by Atlantis Press.
- Open Access
- This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - JOUR AU - Gilbert Honnouvo AU - Mahouton Norbert Hounkonnou AU - Gabriel Yves Hugues PY - 2004 DA - 2004/10/01 TI - von Neumann Quantization of Aharonov-Bohm Operator with Interaction: Scattering Theory, Spectral and Resonance Properties JO - Journal of Nonlinear Mathematical Physics SP - 66 EP - 71 VL - 11 IS - Supplement 1 SN - 1776-0852 UR - https://doi.org/10.2991/jnmp.2004.11.s1.8 DO - 10.2991/jnmp.2004.11.s1.8 ID - Honnouvo2004 ER -