Volume 4, Issue 3-4, September 1997, Pages 455 - 469
The Finite-Dimensional Moser Type Reduction of Modified Boussinesq and Super-Korteweg-de Vries Hamiltonian Systems via the Gradient-Holonomic Algorithm and Dual Moment Maps. Part I
Authors
A.K. Prykarpatsky, O.E. Hentosh, D.L. Blackmore
Corresponding Author
A.K. Prykarpatsky
Available Online 1 September 1997.
- DOI
- 10.2991/jnmp.1997.4.3-4.21How to use a DOI?
- Abstract
The Moser type reductions of modified Boussinessq and super-Korteweg-de Vries equations upon the finite-dimensional invariant subspaces of solutions are considered. For the Hamiltonian and Liouville integrable finite-dimensional dynamical systems concerned with the invariant subspaces, the Lax representations via the dual moment maps into some deformed loop algebras and the finite hierarchies of conservation laws are obtained. A supergeneralization of the Neumann dynamical system is presented.
- Copyright
- © 2006, the Authors. Published by Atlantis Press.
- Open Access
- This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - JOUR AU - A.K. Prykarpatsky AU - O.E. Hentosh AU - D.L. Blackmore PY - 1997 DA - 1997/09/01 TI - The Finite-Dimensional Moser Type Reduction of Modified Boussinesq and Super-Korteweg-de Vries Hamiltonian Systems via the Gradient-Holonomic Algorithm and Dual Moment Maps. Part I JO - Journal of Nonlinear Mathematical Physics SP - 455 EP - 469 VL - 4 IS - 3-4 SN - 1776-0852 UR - https://doi.org/10.2991/jnmp.1997.4.3-4.21 DO - 10.2991/jnmp.1997.4.3-4.21 ID - Prykarpatsky1997 ER -