Rational Solutions of an Extended Lotka-Volterra Equation
- DOI
- 10.2991/jnmp.2002.9.s1.7How to use a DOI?
- Abstract
A series of rational solutions are presented for an extended Lotka-Volterra eqution. These rational solutions are obtained by using Hirota's bilinear formalism and Bäcklund transformation. The crucial step is the use of nonlinear superposition fomula. The so-called extended Lotka-Volterra equation is [1] d dt m-1 i=0 an- m-1 2 +i = k-1 i=0 an+ m-1 2 +i-(k-1)k-1 i=0 an- m-1 2 +i (1) (m = 1, 2, · · · ; k = 1, 2, · · · ; m = k) or d dt m-1 i=0 an- m-1 2 +i = -k-1 i=0 an+ m+1 2 +i -1-k-1 i=0 an- m+1 2 +i+k+1 -1 . (2) (m = 1, 2, · · · ; -k = 1, 2, · · · ) In particular, if m = 1 in (1), equation (1) can be transformed into d dt Nn = k-1 r=1 (Nn-r - Nn+r)Nn (3) by the variable transformation Nn = k-2 i=0 an+i- k 2 +1. Copyright c 2002 by X B Hu and P A Clarkson
- Copyright
- © 2006, the Authors. Published by Atlantis Press.
- Open Access
- This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - JOUR AU - X.B. Hu AU - P.A. Clarkson PY - 2002 DA - 2002/02/01 TI - Rational Solutions of an Extended Lotka-Volterra Equation JO - Journal of Nonlinear Mathematical Physics SP - 75 EP - 83 VL - 9 IS - Supplement 1 SN - 1776-0852 UR - https://doi.org/10.2991/jnmp.2002.9.s1.7 DO - 10.2991/jnmp.2002.9.s1.7 ID - Hu2002 ER -