Volume 9, Issue 4, November 2002, Pages 475 - 482
On the Lie Symmetries of KeplerErmakov Systems
Authors
Ayse Karasu (Kalkanli), Hasan Yildirim
Corresponding Author
Ayse Karasu (Kalkanli)
Received 12 February 2002, Revised 4 May 2002, Accepted 4 May 2002, Available Online 1 November 2002.
- DOI
- 10.2991/jnmp.2002.9.4.8How to use a DOI?
- Abstract
In this work, we study the Lie-point symmetries of KeplerErmakov systems presented by C Athorne in J. Phys. A24 (1991), L1385L1389. We determine the forms of arbitrary function H(x, y) in order to find the members of this class possessing the sl(2, R) symmetry and a Lagrangian. We show that these systems are usual Ermakov systems with the frequency function depending on the dynamical variables.
- Copyright
- © 2006, the Authors. Published by Atlantis Press.
- Open Access
- This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - JOUR AU - Ayse Karasu (Kalkanli) AU - Hasan Yildirim PY - 2002 DA - 2002/11/01 TI - On the Lie Symmetries of KeplerErmakov Systems JO - Journal of Nonlinear Mathematical Physics SP - 475 EP - 482 VL - 9 IS - 4 SN - 1776-0852 UR - https://doi.org/10.2991/jnmp.2002.9.4.8 DO - 10.2991/jnmp.2002.9.4.8 ID - Karasu(Kalkanli)2002 ER -