Journal of Nonlinear Mathematical Physics

Volume 17, Issue 4, December 2010, Pages 429 - 443

Noncommutative Hypergeometric and Basic Hypergeometric Equations

Authors
Alessandro Conflitti
Michael J. Schlosser
CMUC, Centre for Mathematics, University of Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal,conflitt@mat.uc.pt
Fakultät für Mathematik, Universität Wien Nordbergstraße 15, A-1090 Vienna, Austria,michael.schlosser@univie.ac.at
Received 23 May 2007, Accepted 16 March 2010, Available Online 7 January 2021.
DOI
10.1142/S1402925110000982How to use a DOI?
Keywords
Noncommutative hypergeometric series; hypergeometric differential equation
Abstract

Recently, J. A. Tirao [Proc. Nat. Acad. Sci. 100(14) (2003) 8138–8141] considered a matrix-valued analogue of the 2F1 Gauß hypergeometric function and showed that it is the unique solution of a matrix-valued hypergeometric equation analytic at z = 0 with value I, the identity matrix, at z = 0. We give an independent proof of Tirao's result, extended to the more general setting of hypergeometric functions over an abstract unital Banach algebra. We provide a similar (but more complicated-looking) result for a second type of noncommutative 2F1 Gauß hypergeometric function. We further give q-analogues for both types of noncommutative hypergeometric equations.

Copyright
© 2010 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Download article (PDF)

Journal
Journal of Nonlinear Mathematical Physics
Volume-Issue
17 - 4
Pages
429 - 443
Publication Date
2021/01/07
ISSN (Online)
1776-0852
ISSN (Print)
1402-9251
DOI
10.1142/S1402925110000982How to use a DOI?
Copyright
© 2010 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - Alessandro Conflitti
AU  - Michael J. Schlosser
PY  - 2021
DA  - 2021/01/07
TI  - Noncommutative Hypergeometric and Basic Hypergeometric Equations
JO  - Journal of Nonlinear Mathematical Physics
SP  - 429
EP  - 443
VL  - 17
IS  - 4
SN  - 1776-0852
UR  - https://doi.org/10.1142/S1402925110000982
DO  - 10.1142/S1402925110000982
ID  - Conflitti2021
ER  -