Journal of Nonlinear Mathematical Physics

Volume 17, Issue 3, September 2010, Pages 357 - 377

Discrete Multiscale Analysis: A Biatomic Lattice System

Authors
G. A. Cassatella Contra*, D. Levi
*Departamento de Física Teórica II, (Métodos Matemáticos de la Física), Universidad Complutense de Madrid, Ciudad Universitaria, 28040 — Madrid, Spain
Dipartimento di Ingegneria Elettronica, Università degli Studi Roma Tre and Sezione, INFN Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy
Received 26 October 2009, Accepted 13 July 2010, Available Online 7 January 2021.
DOI
10.1142/S1402925110000957How to use a DOI?
Keywords
Multiple scale expansions; asymptotic analysis on the lattice; integrable equations; nonlinear chains; discrete Nonlinear Schrödinger equation; biatomic lattices
Abstract

We discuss a discrete approach to the multiscale reductive perturbative method and apply it to a biatomic chain with a nonlinear interaction between the atoms. This system is important to describe the time evolution of localized solitonic excitations.

We require that also the reduced equation be discrete. To do so coherently we need to discretize the time variable to be able to get asymptotic discrete waves and carry out a discrete multiscale expansion around them. Our resulting nonlinear equation will be a kind of discrete Nonlinear Schrödinger equation. If we make its continuum limit, we obtain the standard Nonlinear Schrödinger differential equation.

Copyright
© 2010 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Download article (PDF)

Journal
Journal of Nonlinear Mathematical Physics
Volume-Issue
17 - 3
Pages
357 - 377
Publication Date
2021/01/07
ISSN (Online)
1776-0852
ISSN (Print)
1402-9251
DOI
10.1142/S1402925110000957How to use a DOI?
Copyright
© 2010 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - G. A. Cassatella Contra
AU  - D. Levi
PY  - 2021
DA  - 2021/01/07
TI  - Discrete Multiscale Analysis: A Biatomic Lattice System
JO  - Journal of Nonlinear Mathematical Physics
SP  - 357
EP  - 377
VL  - 17
IS  - 3
SN  - 1776-0852
UR  - https://doi.org/10.1142/S1402925110000957
DO  - 10.1142/S1402925110000957
ID  - CassatellaContra2021
ER  -