Journal of Nonlinear Mathematical Physics

Volume 18, Issue 3, September 2011, Pages 461 - 474

Quaternionic Integrability

Authors
Giuseppe Gaeta
Dipartimento di Matematica, Università degli Studi di Milano, v. Saldini 50, I-20133 Milano, Italy,giuseppe.gaeta@unimi.it
Received 7 April 2011, Accepted 18 May 2011, Available Online 7 January 2021.
DOI
10.1142/S1402925111001714How to use a DOI?
Keywords
Integrable systems; quaternionic structures; hyperkahler structures; Clifford algebras; Pauli equation
Abstract

Standard (Arnold–Liouville) integrable systems are intimately related to complex rotations. One can define a generalization of these, sharing many of their properties, where complex rotations are replaced by quaternionic ones, and more generally by the action of a Clifford group. Such a generalization is not limited to integrable systems but — in the quaternionic case — goes over to a generalization of standard Hamilton dynamics.

Copyright
© 2011 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Download article (PDF)

Journal
Journal of Nonlinear Mathematical Physics
Volume-Issue
18 - 3
Pages
461 - 474
Publication Date
2021/01/07
ISSN (Online)
1776-0852
ISSN (Print)
1402-9251
DOI
10.1142/S1402925111001714How to use a DOI?
Copyright
© 2011 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - Giuseppe Gaeta
PY  - 2021
DA  - 2021/01/07
TI  - Quaternionic Integrability
JO  - Journal of Nonlinear Mathematical Physics
SP  - 461
EP  - 474
VL  - 18
IS  - 3
SN  - 1776-0852
UR  - https://doi.org/10.1142/S1402925111001714
DO  - 10.1142/S1402925111001714
ID  - Gaeta2021
ER  -