Volume 19, Issue Supplement 1, November 2012, Pages 161 - 178
Geometrical Methods for Equations of Hydrodynamical Type
Authors
Joachim Escher
Institute for Applied Mathematics, University of Hannover, D-30167 Hannover, Germany,escher@ifam.uni-hannover.de
Boris Kolev
LATP, CNRS & Aix-Marseille University, 39 Rue F. Joliot-Curie, 13453 Marseille Cedex 13, France,kolev@cmi.univ-mrs.fr
Received 23 May 2012, Accepted 22 June 2012, Available Online 28 November 2012.
- DOI
- 10.1142/S140292511240013XHow to use a DOI?
- Keywords
- Euler equation; diffeomorphism group; fractional Sobolev metrics
- Abstract
We describe some recent results for a class of nonlinear hydrodynamical approximation models where the geometric approach gives insight into a variety of aspects. The main contribution concerns analytical results for Euler equations on the diffeomorphism group of the circle for which the inertia operator is a nonlocal operator.
- Copyright
- © 2012 The Authors. Published by Atlantis Press and Taylor & Francis
- Open Access
- This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - JOUR AU - Joachim Escher AU - Boris Kolev PY - 2012 DA - 2012/11/28 TI - Geometrical Methods for Equations of Hydrodynamical Type JO - Journal of Nonlinear Mathematical Physics SP - 161 EP - 178 VL - 19 IS - Supplement 1 SN - 1776-0852 UR - https://doi.org/10.1142/S140292511240013X DO - 10.1142/S140292511240013X ID - Escher2012 ER -