Journal of Nonlinear Mathematical Physics

Volume 20, Issue 4, December 2013, Pages 475 - 479

On the nonexistence of Liouvillian first integrals for generalized Liénard polynomial differential systems

Authors
Guillaume Chèze
Institut de Mathématiques de Toulouse, Université Paul Sabatier Toulouse 3, CNRS UMR 5219 MIP Bât 1R3, 31 062 TOULOUSE cedex 9, France,guillaume.cheze@math.univ-toulouse.fr
Thomas Cluzeau
Université de Limoges ; CNRS ; XLIM UMR 7252 ; DMI 123 avenue Albert Thomas, 87 060 LIMOGES cedex, France,thomas.cluzeau@xlim.fr
Received 8 June 2013, Accepted 18 September 2013, Available Online 6 January 2021.
DOI
10.1080/14029251.2013.868260How to use a DOI?
Keywords
polynomial vector fields; first integrals; invariant algebraic curves; Liénard polynomial differential systems
Abstract

We consider generalized Liénard polynomial differential systems of the form = y, = -g(x) - f (x) y, with f (x) and g(x) two polynomials satisfying deg(g) ≤ deg(f). In their work, Llibre and Valls have shown that, except in some particular cases, such systems have no Liouvillian first integral. In this letter, we give a direct and shorter proof of this result.

Copyright
© 2013 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Download article (PDF)

Journal
Journal of Nonlinear Mathematical Physics
Volume-Issue
20 - 4
Pages
475 - 479
Publication Date
2021/01/06
ISSN (Online)
1776-0852
ISSN (Print)
1402-9251
DOI
10.1080/14029251.2013.868260How to use a DOI?
Copyright
© 2013 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - Guillaume Chèze
AU  - Thomas Cluzeau
PY  - 2021
DA  - 2021/01/06
TI  - On the nonexistence of Liouvillian first integrals for generalized Liénard polynomial differential systems
JO  - Journal of Nonlinear Mathematical Physics
SP  - 475
EP  - 479
VL  - 20
IS  - 4
SN  - 1776-0852
UR  - https://doi.org/10.1080/14029251.2013.868260
DO  - 10.1080/14029251.2013.868260
ID  - Chèze2021
ER  -