<Previous Article In Issue
Volume 22, Issue 1, December 2014, Pages 155 - 169
A three-component Camassa-Holm system with cubic nonlinearity and peakons
Authors
Baoqiang Xia
School of Mathematics and Statistics, Jiangsu Normal University Xuzhou, Jiangsu 221116, P.R. China.xiabaoqiang@126.com
Ruguang Zhou
School of Mathematics and Statistics, Jiangsu Normal University Xuzhou, Jiangsu 221116, P.R. China.zhouruguang@jsnu.edu.cn
Zhijun Qiao
Department of Mathematics, University of Texas-Pan American Edinburg, Texas 78541, USA.qiao@utpa.edu
Received 29 July 2014, Accepted 23 October 2014, Available Online 6 January 2021.
- DOI
- 10.1080/14029251.2015.996446How to use a DOI?
- Keywords
- Three-component Camassa-Holm equation; Peakon; Lax pair; Conservation laws
- Abstract
In this paper, we propose a three-component Camassa-Holm (3CH) system with cubic nonlinearity and peaked solitons (peakons). The 3CH model is proven to be integrable in the sense of Lax pair, Hamiltonian structure, and conservation laws. We show that this system admits peakons and multi-peakon solutions. Additionally, reductions of the 3CH system are investigated so that a new integrable perturbed CH equation with cubic nonlinearity is generated to possess peakon solutions.
- Copyright
- © 2015 The Authors. Published by Atlantis Press and Taylor & Francis
- Open Access
- This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).
<Previous Article In Issue
Cite this article
TY - JOUR AU - Baoqiang Xia AU - Ruguang Zhou AU - Zhijun Qiao PY - 2021 DA - 2021/01/06 TI - A three-component Camassa-Holm system with cubic nonlinearity and peakons JO - Journal of Nonlinear Mathematical Physics SP - 155 EP - 169 VL - 22 IS - 1 SN - 1776-0852 UR - https://doi.org/10.1080/14029251.2015.996446 DO - 10.1080/14029251.2015.996446 ID - Xia2021 ER -