Journal of Nonlinear Mathematical Physics

Volume 23, Issue 2, March 2016, Pages 234 - 242

Darboux integrability of generalized Yang–Mills Hamiltonian system

Authors
Jaume Llibre
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain,jllibre@mat.uab.cat
Claudia Valls
Departamento de Matemática, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1049–001, Lisboa, Portugal,cvalls@math.ist.utl.pt
Received 2 February 2016, Accepted 18 February 2016, Available Online 6 January 2021.
DOI
10.1080/14029251.2016.1175820How to use a DOI?
Keywords
Hamiltonian systems; weight-homogenous differential systems; polynomial integrability
Abstract

We show that the generalized Yang–Mills system with Hamiltonian H=(p12+p22)/2+V(q1,q2) where V=1/2(aq12+bq22)+(cq14+2eq12q22+dq24)/4 is not completely integrable with Darboux first integrals.

Copyright
© 2016 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Download article (PDF)

Journal
Journal of Nonlinear Mathematical Physics
Volume-Issue
23 - 2
Pages
234 - 242
Publication Date
2021/01/06
ISSN (Online)
1776-0852
ISSN (Print)
1402-9251
DOI
10.1080/14029251.2016.1175820How to use a DOI?
Copyright
© 2016 The Authors. Published by Atlantis Press and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - Jaume Llibre
AU  - Claudia Valls
PY  - 2021
DA  - 2021/01/06
TI  - Darboux integrability of generalized Yang–Mills Hamiltonian system
JO  - Journal of Nonlinear Mathematical Physics
SP  - 234
EP  - 242
VL  - 23
IS  - 2
SN  - 1776-0852
UR  - https://doi.org/10.1080/14029251.2016.1175820
DO  - 10.1080/14029251.2016.1175820
ID  - Llibre2021
ER  -