Journal of Nonlinear Mathematical Physics

Volume 25, Issue 3, July 2018, Pages 462 - 484

Hopf magnetic curves in the anti-de Sitter space 𝔿13

Authors
Giovanni Calvaruso
Dipartimento di Matematica e Fisica “E. De Giorgi” Università del Salento, Prov. Lecce-Arnesano 73100 Lecce, Italy,giovanni.calvaruso@unisalento.it
Marian Ioan Munteanu
Department of Mathematics, University Alexandru Ioan Cuza of Iasi Bd. Carol I, n. 11, 700506 Iasi, Romania,marian.ioan.munteanu@gmail.com
Received 9 September 2017, Accepted 21 March 2018, Available Online 6 January 2021.
DOI
10.1080/14029251.2018.1494767How to use a DOI?
Keywords
Anti-de Sitter space; Hopf fibration; magnetic curves
Abstract

We consider the anti-de Sitter space 𝔿13 and the hyperbolic Hopf fibration h:𝔿13(1)𝔿2(1/2). Using their description in terms of paraquaternions, we study the magnetic curves of the hyperbolic Hopf vector field. A complete classification is obtained for light-like magnetic curves, showing in particular the existence of periodic examples, and emphasizing their relationship with the hyperbolic Hopf fibration. Finally, we give a new interpretation of magnetic curves in 𝔿13 using some techniques of Lie groups and Lie algebras.

Copyright
© 2018 The Authors. Published by Atlantis and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Download article (PDF)
View full text (HTML)

Journal
Journal of Nonlinear Mathematical Physics
Volume-Issue
25 - 3
Pages
462 - 484
Publication Date
2021/01/06
ISSN (Online)
1776-0852
ISSN (Print)
1402-9251
DOI
10.1080/14029251.2018.1494767How to use a DOI?
Copyright
© 2018 The Authors. Published by Atlantis and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - Giovanni Calvaruso
AU  - Marian Ioan Munteanu
PY  - 2021
DA  - 2021/01/06
TI  - Hopf magnetic curves in the anti-de Sitter space 𝔿13
JO  - Journal of Nonlinear Mathematical Physics
SP  - 462
EP  - 484
VL  - 25
IS  - 3
SN  - 1776-0852
UR  - https://doi.org/10.1080/14029251.2018.1494767
DO  - 10.1080/14029251.2018.1494767
ID  - Calvaruso2021
ER  -