Volume 26, Issue 2, March 2019, Pages 281 - 293
Differential Equations Invariant Under Conditional Symmetries
Authors
Decio Levi
INFN, Sezione Roma Tre, Via della Vasca Navale 84 00146 Roma, Italy,levi@roma.infn.it
Miguel A. Rodríguez
Dept. de Física Teórica, Pza. de las Ciencias 1, Universidad Complutense de Madrid 28040 Madrid, Spain,rodrigue@ucm.es
Zora Thomova
SUNY Polytechnic Institute, 100 Seymour Road, Utica, NY 13502, USA,Zora.Thomova@sunypoly.edu
Received 18 April 2018, Accepted 18 December 2018, Available Online 6 January 2021.
- DOI
- 10.1080/14029251.2019.1591731How to use a DOI?
- Keywords
- Lie symmetries; partial differential equations; conditional symmetries
- Abstract
Nonlinear PDE’s having given conditional symmetries are constructed. They are obtained starting from the invariants of the conditional symmetry generator and imposing the extra condition given by the characteristic of the symmetry. Series of examples starting from the Boussinesq and including non-autonomous Korteweg–de Vries like equations are given to show and clarify the methodology introduced.
- Copyright
- © 2019 The Authors. Published by Atlantis and Taylor & Francis
- Open Access
- This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).
Download article (PDF)
View full text (HTML)
Cite this article
TY - JOUR AU - Decio Levi AU - Miguel A. Rodríguez AU - Zora Thomova PY - 2021 DA - 2021/01/06 TI - Differential Equations Invariant Under Conditional Symmetries JO - Journal of Nonlinear Mathematical Physics SP - 281 EP - 293 VL - 26 IS - 2 SN - 1776-0852 UR - https://doi.org/10.1080/14029251.2019.1591731 DO - 10.1080/14029251.2019.1591731 ID - Levi2021 ER -