Journal of Nonlinear Mathematical Physics

Volume 27, Issue 2, January 2020, Pages 267 - 278

Final evolutions of a class of May-Leonard Lotka-Volterra systems

Authors
Claudio A. Buzzi, Robson A. T. Santos
Departamento de Matemática, Universidade Estadual Paulista, Rua Cristóvão Colombo 2265, São José do Rio Preto, 15115-000, Brazil,claudio.buzzi@unesp.brandrobson.trevizan@outlook.com
Jaume Llibre
Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edificio C Facultad de Ciencias, Bellaterra (Barcelona), Catalonia, 08193, Spain,jllibre@mat.uab.cat
Received 8 June 2019, Accepted 29 August 2019, Available Online 27 January 2020.
DOI
10.1080/14029251.2020.1700635How to use a DOI?
Keywords
May-Leonard system; Lotka-Volterra system; invariant, global dynamics
Abstract

We study a particular class of Lotka-Volterra 3-dimensional systems called May-Leonard systems, which depend on two real parameters a and b, when a + b = −1. For these values of the parameters we shall describe its global dynamics in the compactification of the non-negative octant of ℝ3 including its infinity. This can be done because this differential system possesses a Darboux invariant.

Copyright
© 2020 The Authors. Published by Atlantis and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Download article (PDF)
View full text (HTML)

Journal
Journal of Nonlinear Mathematical Physics
Volume-Issue
27 - 2
Pages
267 - 278
Publication Date
2020/01/27
ISSN (Online)
1776-0852
ISSN (Print)
1402-9251
DOI
10.1080/14029251.2020.1700635How to use a DOI?
Copyright
© 2020 The Authors. Published by Atlantis and Taylor & Francis
Open Access
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - Claudio A. Buzzi
AU  - Robson A. T. Santos
AU  - Jaume Llibre
PY  - 2020
DA  - 2020/01/27
TI  - Final evolutions of a class of May-Leonard Lotka-Volterra systems
JO  - Journal of Nonlinear Mathematical Physics
SP  - 267
EP  - 278
VL  - 27
IS  - 2
SN  - 1776-0852
UR  - https://doi.org/10.1080/14029251.2020.1700635
DO  - 10.1080/14029251.2020.1700635
ID  - Buzzi2020
ER  -