Volume 27, Issue 2, January 2020, Pages 267 - 278
Final evolutions of a class of May-Leonard Lotka-Volterra systems
Authors
Claudio A. Buzzi, Robson A. T. Santos
Departamento de Matemática, Universidade Estadual Paulista, Rua Cristóvão Colombo 2265, São José do Rio Preto, 15115-000, Brazil,claudio.buzzi@unesp.brandrobson.trevizan@outlook.com
Jaume Llibre
Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edificio C Facultad de Ciencias, Bellaterra (Barcelona), Catalonia, 08193, Spain,jllibre@mat.uab.cat
Received 8 June 2019, Accepted 29 August 2019, Available Online 27 January 2020.
- DOI
- 10.1080/14029251.2020.1700635How to use a DOI?
- Keywords
- May-Leonard system; Lotka-Volterra system; invariant, global dynamics
- Abstract
We study a particular class of Lotka-Volterra 3-dimensional systems called May-Leonard systems, which depend on two real parameters a and b, when a + b = −1. For these values of the parameters we shall describe its global dynamics in the compactification of the non-negative octant of ℝ3 including its infinity. This can be done because this differential system possesses a Darboux invariant.
- Copyright
- © 2020 The Authors. Published by Atlantis and Taylor & Francis
- Open Access
- This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).
Download article (PDF)
View full text (HTML)
Cite this article
TY - JOUR AU - Claudio A. Buzzi AU - Robson A. T. Santos AU - Jaume Llibre PY - 2020 DA - 2020/01/27 TI - Final evolutions of a class of May-Leonard Lotka-Volterra systems JO - Journal of Nonlinear Mathematical Physics SP - 267 EP - 278 VL - 27 IS - 2 SN - 1776-0852 UR - https://doi.org/10.1080/14029251.2020.1700635 DO - 10.1080/14029251.2020.1700635 ID - Buzzi2020 ER -