Volume 1, Issue 4, November 1994, Pages 401 - 413
Eigenvectors of the recursion operator and a symmetry structure for the coupled KdV hierarchy
Authors
Sen-Yue Lou
Corresponding Author
Sen-Yue Lou
Received 1 August 1994, Available Online 1 November 1994.
- DOI
- 10.2991/jnmp.1994.1.4.5How to use a DOI?
- Abstract
It is shown that eigenvectors of the recursion operator L with the eigenvalue i and the inverse of the recursion operator Li L-i for the coupled KdV hierarchy (CKdVH) can be obtained in terms of squared eigenfunctions of the associated linear problem. The symmetry structure and corresponding infinite dimensional Lie algebras of CKdVH are also given. Using both the local and nonlocal symmetries of CKdVH, one can obtain some exact group invariant solutions and various new infinite-dimensional and finite-dimensional integrable models.
- Copyright
- © 2006, the Authors. Published by Atlantis Press.
- Open Access
- This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - JOUR AU - Sen-Yue Lou PY - 1994 DA - 1994/11/01 TI - Eigenvectors of the recursion operator and a symmetry structure for the coupled KdV hierarchy JO - Journal of Nonlinear Mathematical Physics SP - 401 EP - 413 VL - 1 IS - 4 SN - 1776-0852 UR - https://doi.org/10.2991/jnmp.1994.1.4.5 DO - 10.2991/jnmp.1994.1.4.5 ID - Lou1994 ER -