Volume 3, Issue 3-4, September 1996, Pages 296 - 301
On Unique Symmetry of Two Nonlinear Generalizations of the Schrödinger Equation
Authors
Wilhelm Fushchych, Roman Cherniha, Volodymyr Chopyk
Corresponding Author
Wilhelm Fushchych
Available Online 2 September 1996.
- DOI
- 10.2991/jnmp.1996.3.3-4.6How to use a DOI?
- Abstract
We prove that two nonlinear generalizations of the nonlinear Schrödinger equation are invariant with respect to a Lie algebra that coincides with the invariance algebra of the Hamilton-Jacobi equation.
- Copyright
- © 2006, the Authors. Published by Atlantis Press.
- Open Access
- This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - JOUR AU - Wilhelm Fushchych AU - Roman Cherniha AU - Volodymyr Chopyk PY - 1996 DA - 1996/09/02 TI - On Unique Symmetry of Two Nonlinear Generalizations of the Schrödinger Equation JO - Journal of Nonlinear Mathematical Physics SP - 296 EP - 301 VL - 3 IS - 3-4 SN - 1776-0852 UR - https://doi.org/10.2991/jnmp.1996.3.3-4.6 DO - 10.2991/jnmp.1996.3.3-4.6 ID - Fushchych1996 ER -