International Journal of Networked and Distributed Computing

Volume 6, Issue 2, April 2018, Pages 63 - 77

Improvement of CSF, WM and GM Tissue Segmentation by Hybrid Fuzzy – Possibilistic Clustering Model based on Genetic Optimization Case Study on Brain Tissues of Patients with Alzheimer’s Disease

Authors
Lilia Lazli1, 2, lilia.lazli.1@ens.etsmtl.ca, Mounir Boukadoum1, boukadoum.mounir@uqam.ca
1CoFaMic Research Centre, Department of Computer Science, UQÀM, University of Quebec, Canada
2Department of Electrical Engineering, ÉTS, University of Quebec, Canada
Available Online 30 April 2018.
DOI
10.2991/ijndc.2018.6.2.2How to use a DOI?
Keywords
Fuzzy c-means algorithm; Possibilistic c-means algorithm; Genetic algorithms; Hybrid reasoning; Brain tissue clustering; Alzheimer’s disease
Abstract

Brain tissue segmentation is one of the most important parts of clinical diagnostic tools. Fuzzy C-mean (FCM) is one of the most popular clustering based segmentation methods. However FCM does not robust against noise and artifacts such as partial volume effect (PVE) and inhomogeneity. In this paper, a new approach for robust brain tissue segmentation is described. The proposed method quantifies the volumes of white matter (WM), gray matter (GM) and cerebrospinal fluid(CSF) tissues using hybrid clustering process which based on: (1) FCM algorithm to get the initial center partition. (2) Genetic algorithms (GA) to achieve optimization and to determine the appropriate cluster centers and the fuzzy corresponding partition matrix. (3) Possibilistic C-Means (PCM) algorithm for volumetric measurements of WM, GM, and CSF brain tissues. (4) Rule of the possibility maximum to compute the labeled image in decision step. The experiments were realized using different real and synthetic brain images from patients with Alzheimer’s disease. We used Tanimoto coefficient, sensitivity and specificity validity indexes to validate the proposed hybrid approach and we compared the performance with several competing methods namely FCM and PCM algorithms. Good result was achieved which demonstrates the efficiency of proposed clustering approach and that it can outperforms competing methods especially in the presence of PVE and when the noise and spatial intensity inhomogeneity are high.

Copyright
Copyright © 2018, the Authors. Published by Atlantis Press.
Open Access
This is an open access article under the CC BY-NC license (http://creativecommons.org/licences/by-nc/4.0/).

Download article (PDF)
View full text (HTML)

Journal
International Journal of Networked and Distributed Computing
Volume-Issue
6 - 2
Pages
63 - 77
Publication Date
2018/04/30
ISSN (Online)
2211-7946
ISSN (Print)
2211-7938
DOI
10.2991/ijndc.2018.6.2.2How to use a DOI?
Copyright
Copyright © 2018, the Authors. Published by Atlantis Press.
Open Access
This is an open access article under the CC BY-NC license (http://creativecommons.org/licences/by-nc/4.0/).

Cite this article

TY  - JOUR
AU  - Lilia Lazli
AU  - Mounir Boukadoum
PY  - 2018
DA  - 2018/04/30
TI  - Improvement of CSF, WM and GM Tissue Segmentation by Hybrid Fuzzy – Possibilistic Clustering Model based on Genetic Optimization Case Study on Brain Tissues of Patients with Alzheimer’s Disease
JO  - International Journal of Networked and Distributed Computing
SP  - 63
EP  - 77
VL  - 6
IS  - 2
SN  - 2211-7946
UR  - https://doi.org/10.2991/ijndc.2018.6.2.2
DO  - 10.2991/ijndc.2018.6.2.2
ID  - Lazli2018
ER  -