Use of Back Propagation Artificial Neural Network to Predict Passenger Volume of Beijing Subway
- DOI
- 10.2991/scict-14.2014.10How to use a DOI?
- Keywords
- passenger volume prediction of Beijing subway; SPSS; B-P artificial neural network
- Abstract
This paper analyze different aspects of factors that affecting passenger volume of Beijing subway, then select fifteen key factors from four aspects: internal structure of the urban rail transit system, urban demographic features, economic development and urban transport structure. Firstly, SPSS software is used to examine the multicollinearity among all the variables and then we remove three factors that are of strong multicollinearity with others. Finally, B-P artificial neural network model is established based on the remainder of factors to predict passenger volume of Beijing subway for the next few years. The results show that the average relative error of the past twenty year is 5.56%.
- Copyright
- © 2014, the Authors. Published by Atlantis Press.
- Open Access
- This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - CONF AU - Xiaoqing Zhang AU - Zhili Liu AU - Lan Li PY - 2014/05 DA - 2014/05 TI - Use of Back Propagation Artificial Neural Network to Predict Passenger Volume of Beijing Subway BT - Proceedings of the 2nd International Conference on Soft Computing in Information Communication Technology PB - Atlantis Press SP - 39 EP - 43 SN - 1951-6851 UR - https://doi.org/10.2991/scict-14.2014.10 DO - 10.2991/scict-14.2014.10 ID - Zhang2014/05 ER -