Algorithmic Impromovement Of Dynamic Hand Gesture Recognition Based On HMM Algorithm
- DOI
- 10.2991/mce-14.2014.43How to use a DOI?
- Keywords
- Dynamic gesture recognition; HMM algorithm; threshold method; Forward—Backward algorithm; recognition rate
- Abstract
Compared with other methods of dynamic gesture recognition, dynamic hand gesture recognition based on Hidden Markov Model (HMM) is more widely used. This method aims at analyzing hand signals. In traditional HMM method, any gestures would be calculated with the largest probability as the final recognition result according to Forward – Backward algorithm [1]. In this paper, We study and propose improved algorithm by using some methods like graphics normalizing, probability range limit, number of points limit, coding species limit, etc. to enhance the HMM method for improving the recognition rate and reducing the false detection rate. Experimental results show that the gesture trajectory recognition rate of such method is about 94%, which is higher than the traditional rate of 80%. Furthermore, the excluding error recognition rate, which was not dealt in the past, has reached 100%. Besides, our algorithm can be widely used because of its simple method of equipment, high precision and better robustness.
- Copyright
- © 2014, the Authors. Published by Atlantis Press.
- Open Access
- This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - CONF AU - Xue Xue AU - Zhuojia Li AU - Chuyu Hong PY - 2014/03 DA - 2014/03 TI - Algorithmic Impromovement Of Dynamic Hand Gesture Recognition Based On HMM Algorithm BT - Proceedings of the 2014 International Conference on Mechatronics, Control and Electronic Engineering PB - Atlantis Press SP - 198 EP - 201 SN - 1951-6851 UR - https://doi.org/10.2991/mce-14.2014.43 DO - 10.2991/mce-14.2014.43 ID - Xue2014/03 ER -