Object-Based Accumulated Motion Feature for the Compressed Domain Human Action Analysis
Authors
Corresponding Author
Cheng-Chang Lien
Available Online October 2006.
- DOI
- 10.2991/jcis.2006.262How to use a DOI?
- Keywords
- Compressed video,Video segmentation,Object-based accumulative motion vector (OAMV),Hidden Markov Models.
- Abstract
This paper proposed an effective and robust method to detect the rare behavior events within the compressed video directly. New motion feature called object-based accumulative motion vector (OAMV) is generated to extract a prominent motion feature and then polar histograms are used to describe the distribution patterns for each human action. The various kinds of human actions are identified by the HMM method. Experimental results show that the human actions may be identified accurately.
- Copyright
- © 2006, the Authors. Published by Atlantis Press.
- Open Access
- This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - CONF AU - Cheng-Chang Lien AU - Chen-Yu Hong AU - Yu-Ting Fu PY - 2006/10 DA - 2006/10 TI - Object-Based Accumulated Motion Feature for the Compressed Domain Human Action Analysis BT - Proceedings of the 9th Joint International Conference on Information Sciences (JCIS-06) PB - Atlantis Press SN - 1951-6851 UR - https://doi.org/10.2991/jcis.2006.262 DO - 10.2991/jcis.2006.262 ID - Lien2006/10 ER -