Neural-Network-based Metamodeling for Financial Time Series Forecasting
- DOI
- 10.2991/jcis.2006.172How to use a DOI?
- Keywords
- Metamodeling, neural network, financial time series forecasting, cross-validation
- Abstract
In the financial time series forecasting field, the problem that we often encountered is how to increase the predict accuracy as possible using the noisy financial data. In this study, we discuss the use of supervised neural networks as the metamodeling technique to design a financial time series forecasting system to solve this problem. First of all, a cross-validation technique is used to generate different training subsets. Based on the different training subsets, the different neural predictors with different initial conditions or training algorithms is then trained to formulate different forecasting models, i.e., base models. Finally, a neural-network-based metamodel can be produced by learning from all base models so as to improve the model accuracy. For verification, two real-world financial time series is used for testing.
- Copyright
- © 2006, the Authors. Published by Atlantis Press.
- Open Access
- This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - CONF AU - Kin Keung Lai AU - Lean YU AU - Shouyang Wang AU - Chengxiong Zhou PY - 2006/10 DA - 2006/10 TI - Neural-Network-based Metamodeling for Financial Time Series Forecasting BT - Proceedings of the 9th Joint International Conference on Information Sciences (JCIS-06) PB - Atlantis Press SP - 609 EP - 612 SN - 1951-6851 UR - https://doi.org/10.2991/jcis.2006.172 DO - 10.2991/jcis.2006.172 ID - Lai2006/10 ER -