The Auto Annotation Latent Dirichlet Allocation
Authors
Yingzhuo Xiang, Dongmei Yang, Jikun Yan
Corresponding Author
Yingzhuo Xiang
Available Online July 2015.
- DOI
- 10.2991/icismme-15.2015.387How to use a DOI?
- Keywords
- LDA; auto annotation; NLP; text modeling.
- Abstract
In this paper, we introduce the Auto-Annotation LDA models (aaLDA), a statistical model of non-labeled documents. This model generates the annotation of LDA automatically. We derive the annotation of LDA using a k-means methods combined with a pre-processing of the corpus. In this paper, we use aaLDA models to categorize “zhongwenshilei” corpus, which is a famous Chinese corpus. Then we make a compare with the traditional LDA methods.
- Copyright
- © 2015, the Authors. Published by Atlantis Press.
- Open Access
- This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - CONF AU - Yingzhuo Xiang AU - Dongmei Yang AU - Jikun Yan PY - 2015/07 DA - 2015/07 TI - The Auto Annotation Latent Dirichlet Allocation BT - Proceedings of the First International Conference on Information Sciences, Machinery, Materials and Energy PB - Atlantis Press SP - 1893 EP - 1896 SN - 1951-6851 UR - https://doi.org/10.2991/icismme-15.2015.387 DO - 10.2991/icismme-15.2015.387 ID - Xiang2015/07 ER -