The parameter’s MCMC estimation of HMMs with transition density function
Authors
Chengwen Zhu, Yu Ge, Lina Lu, Zhang Tian, Chuizhen Zeng
Corresponding Author
Chengwen Zhu
Available Online March 2013.
- DOI
- 10.2991/iccsee.2013.327How to use a DOI?
- Keywords
- HMM, Gibbs Sampling, Conjugate Priors
- Abstract
The parameter estimation of HMM is critical to all its applications. The classic B-W algorithm is not flexible with the initial parameters and is easy to fall into the local optimal solution. Bayes estimation of it makes posterior risk minimization, and make full use of the experience, history information and other information other than samples, is useful in many cases. Employs the great computational power of MCMC, the MCMC estimation of HMM parameter can be more effective.
- Copyright
- © 2013, the Authors. Published by Atlantis Press.
- Open Access
- This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - CONF AU - Chengwen Zhu AU - Yu Ge AU - Lina Lu AU - Zhang Tian AU - Chuizhen Zeng PY - 2013/03 DA - 2013/03 TI - The parameter’s MCMC estimation of HMMs with transition density function BT - Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013) PB - Atlantis Press SP - 1305 EP - 1308 SN - 1951-6851 UR - https://doi.org/10.2991/iccsee.2013.327 DO - 10.2991/iccsee.2013.327 ID - Zhu2013/03 ER -