Improved algorithm for mining maximum frequent patterns based on FP-Tree
- DOI
- 10.2991/iccia.2012.202How to use a DOI?
- Keywords
- data mining,association rule,maximum frequent pattern,FP-Tree
- Abstract
Mining association rule is an important matter in data mining, in which mining maximum frequent patterns is a key problem. Many of the previous algorithms mine maximum frequent patterns by producing candidate patterns firstly, then pruning. But the cost of producing candidate patterns is very high, especially when there exists long patterns. In this paper, the structure of a FP-tree is improved, we propose a fast algorithm based on FP-Tree for mining maximum frequent patterns, the algorithm does not produce maximum frequent candidate patterns and is more effectively than other improved algorithms. The new FP-Tree is a one-way tree and only retains pointers to point its father in each node, so at least one third of memory is saved. Experiment results show that the algorithm is efficient and saves memory space.
- Copyright
- © 2013, the Authors. Published by Atlantis Press.
- Open Access
- This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - CONF AU - Naili Liu AU - Lei Ma PY - 2014/05 DA - 2014/05 TI - Improved algorithm for mining maximum frequent patterns based on FP-Tree BT - Proceedings of the 2012 2nd International Conference on Computer and Information Application (ICCIA 2012) PB - Atlantis Press SP - 833 EP - 836 SN - 1951-6851 UR - https://doi.org/10.2991/iccia.2012.202 DO - 10.2991/iccia.2012.202 ID - Liu2014/05 ER -