Application of Data Mining Technology in Intelligent Environmental Protection Systems
- DOI
- 10.2991/icaita-16.2016.6How to use a DOI?
- Keywords
- intelligent environmental protection; data mining techniques; association rules; flue gas desulfurization monitor
- Abstract
Among the pollutants in the power industry emissions, sulfur dioxide so far has the most serious impact on the environment. In the desulfurization process, it is common to have data with complex correlations, high real-time, and huge amount. Data mining has become an important technique to deal with these data, and to facilitate better environmental protection and pollution control over the total emissions. The theme of this paper is to effectively analyze the correlation between data, via data mining technology and data association rules, to improve overall decision-making capabilities, and then to provide a reliable basis for intelligent environmental protection. In this paper, we propose parameters predictive model. We verify the proposed algorithms using actual monitoring data of desulfurization processes, and demonstrate that the application of the models has achieved good performance in desulfurization monitoring.
- Copyright
- © 2016, the Authors. Published by Atlantis Press.
- Open Access
- This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - CONF AU - Guikang Gao AU - Mingbo Xiao AU - Zhen Wang PY - 2016/01 DA - 2016/01 TI - Application of Data Mining Technology in Intelligent Environmental Protection Systems BT - Proceedings of the 2016 International Conference on Artificial Intelligence: Technologies and Applications PB - Atlantis Press SP - 23 EP - 26 SN - 1951-6851 UR - https://doi.org/10.2991/icaita-16.2016.6 DO - 10.2991/icaita-16.2016.6 ID - Gao2016/01 ER -