Derivation of Rotational Transformation Matrices via Rotational Invariant
Authors
Xiao-Ping Qin, Peng Li, Gang Su, Ling-Mei Cong
Corresponding Author
Xiao-Ping Qin
Available Online August 2017.
- DOI
- 10.2991/icacie-17.2017.8How to use a DOI?
- Keywords
- Vector; Rotational Transformation; Scalar
- Abstract
We derive the space rotational transformation matrices under two assumptions: the invariance of vector length and the allowance of infinitesimal rotation. The derivation is simple and concise by using trigonometric functions and the result is compared with previous studies. The method can be further generalized to derive the Lorentz transformation in spacetime.
- Copyright
- © 2017, the Authors. Published by Atlantis Press.
- Open Access
- This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - CONF AU - Xiao-Ping Qin AU - Peng Li AU - Gang Su AU - Ling-Mei Cong PY - 2017/08 DA - 2017/08 TI - Derivation of Rotational Transformation Matrices via Rotational Invariant BT - Proceedings of the 2017 2nd International Conference on Automatic Control and Information Engineering (ICACIE 2017) PB - Atlantis Press SP - 37 EP - 40 SN - 2352-5401 UR - https://doi.org/10.2991/icacie-17.2017.8 DO - 10.2991/icacie-17.2017.8 ID - Qin2017/08 ER -