A Modification of ECDSA to Avoid the Rho Method Attack
- DOI
- 10.2991/acsr.k.220202.042How to use a DOI?
- Keywords
- ECDLP; ECDSA; ECDSA weak randomness; Rho method attack
- Abstract
Elliptic Curve Digital Signature Algorithm (ECDSA) is a digital signature algorithm that utilizes an elliptic curve. ECDSA consists of three steps, which are key generation, signature generation, and verification algorithm. ECDSA is used on Bitcoin transactions to generate the user’s public key, private key, and signature, and also to verify a Bitcoin user’s signature. There are some researches on ECDSA weak randomness which can be exploited by attackers to reveal the user’s private key, and causes thefts of the user’s money. ECDSA weak randomness is generating a random number that is not cryptographically secure. Some modifications of ECDSA to overcome this problem have been done, such as generating the digital signature by using two private keys. Although those modified algorithms overcome ECDSA weak randomness exploitations, it is not resistant to the Rho method attack which can solve elliptic curve discrete logarithm problem (ECDLP). In case ECDLP can be solved, the user’s private key can be revealed. Therefore, in this paper, we modify an ECDSA algorithm that overcomes the exploitation of ECDSA weak randomness and is also resistant to the Rho method attack by using three private keys.
- Copyright
- © 2022 The Authors. Published by Atlantis Press International B.V.
- Open Access
- This is an open access article under the CC BY-NC license.
Cite this article
TY - CONF AU - Amira Zahra AU - Kiki Ariyanti Sugeng PY - 2022 DA - 2022/02/08 TI - A Modification of ECDSA to Avoid the Rho Method Attack BT - Proceedings of the International Conference on Mathematics, Geometry, Statistics, and Computation (IC-MaGeStiC 2021) PB - Atlantis Press SP - 228 EP - 232 SN - 2352-538X UR - https://doi.org/10.2991/acsr.k.220202.042 DO - 10.2991/acsr.k.220202.042 ID - Zahra2022 ER -