Two theorems from extreme value theory for interval valued events
Authors
Katarína Čunderlíková
Corresponding Author
Katarína Čunderlíková
Available Online August 2019.
- DOI
- 10.2991/eusflat-19.2019.92How to use a DOI?
- Keywords
- Interval valued event Interval valued state Interval valued observable Joint interval valued observable Independence Convergence in distribution Fisher-Tippett-Gnedenko theorem Pickands-Balkema-de Haan theorem Excess interval valued distribution Maximum domain of attraction Generalized Pareto distribution Extreme value theory
- Abstract
In papers \cite{BartkovaCunderlikova18, BartkovaCunderlikova18p} we proved the Fisher-Tippett-Gnedenko theorem and the Pickands-Balkema-de Haan theorem on family of intuitionistic fuzzy events. Since between the intuitionistic fuzzy events and the interval valued events exist a connection, so we try to prove these basic theorems from extreme value theory for interval valued events. We define the notion of independence and convergence in distribution for interval valued observables, too.
- Copyright
- © 2019, the Authors. Published by Atlantis Press.
- Open Access
- This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - CONF AU - Katarína Čunderlíková PY - 2019/08 DA - 2019/08 TI - Two theorems from extreme value theory for interval valued events BT - Proceedings of the 11th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2019) PB - Atlantis Press SP - 660 EP - 667 SN - 2589-6644 UR - https://doi.org/10.2991/eusflat-19.2019.92 DO - 10.2991/eusflat-19.2019.92 ID - Čunderlíková2019/08 ER -