Dependence Concepts and Reliability Application of Concomitants of Order Statistics from the Morgenstern Family
- DOI
- 10.2991/jsta.d.210325.001How to use a DOI?
- Keywords
- Concomitants of order statistics; Dependence measures; Morgenstern type bivariate exponentiated exponential distribution; Reliability; Series and parallel systems
- Abstract
The distribution theory and applications of concomitants from the Morgenstern family of bivariate distributions are discussed in Scaria and Nair, Biom. J. 41 (1999), 483–489. In the present study, some dependence concepts of concomitants of order statistics from the Morgenstern family are discussed. An application in reliability theory of designing a two component system using concomitants is also discussed.
- Copyright
- © 2021 The Authors. Published by Atlantis Press B.V.
- Open Access
- This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).
1. INTRODUCTION
The concept of concomitants, when the bivariate data are ordered by one of its components, was first introduced by [1]. Let
Concepts of stochastic dependence is widely discussed in literature and it permeates throughout our daily life. Lai and Xie [11] discussed different dependence concepts, dependence orderings and measures of dependence in detail. The concepts of dependence in the bivariate and multivariate cases are presented in [12,13]. Esary and Proschan [14] gave definitions to the terms right-tail increasing (RTI) and left-tail decreasing (LTD). The term likelihood ratio dependent (LRD) was first defined by [15]. The concept of
Generally, the component life times of a system may be dependent on one another. Hence we need probability models that prescribe the dependence structures among the life time variables. In multi-component systems, measures of dependence between component lives are a major aspect to be considered in selecting the appropriate model. The Morgenstern system of distributions is a popular, and well-known family of bivariate dependent variables, and its numerous generalizations are scattered in the literature. Dependence properties of this family are closely associated with the correlation coefficient although a priori the pivotal parameter of the family is not associated with this concept. It is already established that the Morgenstern family is suitable in reliability modelling [18]. The Morgenstern system of bivariate distributions discussed in [19] includes all cdfs of the form
Here the parameter
2. CONCOMITANTS OF ORDER STATISTICS AND SOME OF THE DEPENDENCE MEASURES
The general distribution theory of concomitants from the Morgenstern family is discussed in [20]. The cdf, the probability density function (pdf) of the
Equation (2.3) reveals that the joint distribution function of concomitants is a special case of the bivariate Cambanis family, introduced by [21] specified by
When (2.4) is absolutely continuous the parameters satisfy the conditions
Comparing (2.3) with (2.4), we get
Concepts of stochastic dependence are widely applicable in statistics. Among the dependence concepts, correlation is still the most widely used concept in applications. Some of the positive dependence measures are discussed in [11]. In this work we deal with the association measures (Kendall's tau and Spearman's rho) of concomitants of order statistics from the bivariate Morgenstern family.
Holland and Wang [22,23], defined a local dependence function
The Morgenstern family belongs to
From Equation (2.7),
Hence
It is directly established that
There are a variety of ways to measure dependence. The most widely known scale-invariant measures of association are Kendall's tau and Spearman's rho. The dependence measurement for the Cambanis family is computed by Kendall's tau and is calculated by using Equations (2.4) and (2.7), as
By substituting
Using Equations (2.4–2.6), the Spearman's rho for the Cambanis family is calculated as
By substituting
3. DISTRIBUTION THEORY OF LIFETIMES OF TWO COMPONENT SYSTEM USING CONCOMITANTS OF ORDER STATISTICS
Let
From [11],
Using the Equations (2.1), (2.3) and (3.1), we find
The corresponding density function can be obtained from Equation (3.2) as,
Using the formula for the density of order statistics in (3.3), we find
From [11],
Using Equations (2.2), (3.3) and (3.5), we get
Using the formula for the density of order statistics in (3.6), we find
Moments of
From (3.4), the
The
4. APPLICATION IN RELIABILITY
Gupta and Kundu [25] introduced the exponentiated exponential (EE) distribution as a generalization of the standard exponential distribution with corresponding cdf and pdf are respectively,
We denote the EE distribution with parameters
Let Y be the life time of a very expensive component of a two component system and X be an inexpensive variable (directly measurable or observable) which is correlated with Y. Suppose (X, Y) follows MTBEED. Then from (1.1), the cdf of (X, Y) is,
Let
It follows from (3.3) and (3.6) that the density function of the lifetime of a series, and parallel systems using the expensive components
It follows from (4.6) and (4.7) that
The
The mean times to failure (MTTF) of the corresponding systems are obtained by setting k = 1 in (4.10) and (4.11), and using Equation (4.3). They are, respectively
The following relations are directly from (4.12) and (4.13).
Relation 4.1
Relation 4.2
The
n | ||||||||
---|---|---|---|---|---|---|---|---|
(r, s) = (1, 2) | (r, s) = (1, 3) | (r, s) = (2, 3) | (r, s) = (n − 2, n − 1) | (r, s) = (n − 2, n) | (r, s) = (n − 1, n) | |||
10 | 1 | −1 | 0.7879 | 0.7449 | 0.7096 | 0.3460 | 0.3207 | 0.3031 |
−.6 | 0.6618 | 0.6391 | 0.6191 | 0.4009 | 0.3846 | 0.3709 | ||
−.2 | 0.5503 | 0.5437 | 0.5375 | 0.4647 | 0.4589 | 0.4533 | ||
.2 | 0.4533 | 0.4589 | 0.4647 | 0.5375 | 0.5437 | 0.5503 | ||
.6 | 0.3709 | 0.3846 | 0.4009 | 0.6191 | 0.6391 | 0.6618 | ||
1 | 0.3031 | 0.3207 | 0.3460 | 0.7096 | 0.7449 | 0.7879 | ||
2 | −1 | 1.2857 | 1.2314 | 1.1860 | 0.7132 | 0.6798 | 0.6554 | |
−.6 | 1.1252 | 1.0961 | 1.0703 | 0.7867 | 0.7652 | 0.7470 | ||
−.2 | 0.9819 | 0.9734 | 0.9653 | 0.8707 | 0.8631 | 0.8558 | ||
.2 | 0.8558 | 0.8631 | 0.8707 | 0.9653 | 0.9734 | 0.9819 | ||
.6 | 0.7470 | 0.7652 | 0.7867 | 1.0703 | 1.0961 | 1.1252 | ||
1 | 0.6554 | 0.6798 | 0.7132 | 1.1860 | 1.2314 | 1.2857 | ||
3 | −1 | 1.6195 | 1.5605 | 1.5109 | 0.9923 | 0.9554 | 0.9281 | |
−.6 | 1.4447 | 1.4130 | 1.3848 | 1.0737 | 1.0500 | 1.0298 | ||
−.2 | 1.2881 | 1.2788 | 1.2699 | 1.1662 | 1.1578 | 1.1498 | ||
.2 | 1.1498 | 1.1578 | 1.1662 | 1.2699 | 1.2788 | 1.2881 | ||
.6 | 1.0298 | 1.0500 | 1.0737 | 1.3848 | 1.4130 | 1.4447 | ||
1 | 0.9281 | 0.9554 | 0.9923 | 1.5109 | 1.5605 | 1.6195 | ||
4 | −1 | 1.8701 | 1.8084 | 1.7566 | 1.2129 | 1.1742 | 1.1452 | |
−.6 | 1.6874 | 1.6544 | 1.6248 | 1.2987 | 1.2738 | 1.2525 | ||
−.2 | 1.5237 | 1.5139 | 1.5046 | 1.3959 | 1.3871 | 1.3787 | ||
.2 | 1.3787 | 1.3871 | 1.3959 | 1.5046 | 1.5139 | 1.5237 | ||
.6 | 1.2525 | 1.2738 | 1.2987 | 1.6248 | 1.6544 | 1.6874 | ||
1 | 1.1452 | 1.1742 | 1.2129 | 1.7566 | 1.8084 | 1.8701 | ||
5 | −1 | 2.0705 | 2.0072 | 1.9540 | 1.3946 | 1.3546 | 1.3247 | |
−.6 | 1.8830 | 1.8490 | 1.8187 | 1.4831 | 1.4575 | 1.4355 | ||
−.2 | 1.7147 | 1.7047 | 1.6951 | 1.5832 | 1.5742 | 1.5655 | ||
.2 | 1.5655 | 1.5742 | 1.5832 | 1.6951 | 1.7047 | 1.7147 | ||
.6 | 1.4355 | 1.4575 | 1.4831 | 1.8187 | 1.8490 | 1.8830 | ||
1 | 1.3247 | 1.3546 | 1.3946 | 1.9540 | 2.0072 | 2.0705 | ||
20 | 1 | −1 | 0.8474 | 0.8243 | 0.8034 | 0.2955 | 0.2847 | 0.2760 |
−.6 | 0.6936 | 0.6815 | 0.6702 | 0.3654 | 0.3577 | 0.3508 | ||
−.2 | 0.5596 | 0.5562 | 0.5528 | 0.4512 | 0.4482 | 0.4453 | ||
.2 | 0.4453 | 0.4482 | 0.4512 | 0.5528 | 0.5562 | 0.5596 | ||
.6 | 0.3508 | 0.3577 | 0.3654 | 0.6702 | 0.6815 | 0.6936 | ||
1 | 0.2760 | 0.2847 | 0.2955 | 0.8034 | 0.8243 | 0.8474 | ||
2 | −1 | 1.3612 | 1.3321 | 1.3054 | 0.6451 | 0.6305 | 0.6184 | |
−.6 | 1.1659 | 1.1504 | 1.1359 | 0.7397 | 0.7294 | 0.7201 | ||
−.2 | 0.9939 | 0.9894 | 0.9850 | 0.8530 | 0.8491 | 0.8453 | ||
.2 | 0.8453 | 0.8491 | 0.8530 | 0.9850 | 0.9894 | 0.9939 | ||
.6 | 0.7201 | 0.7294 | 0.7397 | 1.1359 | 1.1504 | 1.1659 | ||
1 | 0.6184 | 0.6305 | 0.6451 | 1.3054 | 1.3321 | 1.3612 | ||
3 | −1 | 1.7017 | 1.6699 | 1.6410 | 0.9166 | 0.9003 | 0.8867 | |
−.6 | 1.4891 | 1.4722 | 1.4564 | 1.0217 | 1.0104 | 1.0000 | ||
−.2 | 1.3013 | 1.2964 | 1.2916 | 1.1467 | 1.1424 | 1.1383 | ||
.2 | 1.1383 | 1.1424 | 1.1467 | 1.2916 | 1.2964 | 1.3013 | ||
.6 | 1.0000 | 1.0104 | 1.0217 | 1.4564 | 1.4722 | 1.4891 | ||
1 | 0.8867 | 0.9003 | 0.9166 | 1.6410 | 1.6699 | 1.7017 | ||
4 | −1 | 1.9558 | 1.9227 | 1.8925 | 1.1331 | 1.1159 | 1.1015 | |
−.6 | 1.7338 | 1.7162 | 1.6997 | 1.2440 | 1.2321 | 1.2213 | ||
−.2 | 1.5374 | 1.5323 | 1.5273 | 1.3754 | 1.3709 | 1.3666 | ||
.2 | 1.3666 | 1.3709 | 1.3754 | 1.5273 | 1.5323 | 1.5374 | ||
.6 | 1.2213 | 1.2321 | 1.2440 | 1.6997 | 1.7162 | 1.7338 | ||
1 | 1.1015 | 1.1159 | 1.1331 | 1.8925 | 1.9227 | 1.9558 | ||
5 | −1 | 2.1584 | 2.1245 | 2.0935 | 1.3121 | 1.2944 | 1.2794 | |
−.6 | 1.9307 | 1.9126 | 1.8955 | 1.4267 | 1.4145 | 1.4033 | ||
−.2 | 1.7289 | 1.7236 | 1.7184 | 1.5622 | 1.5576 | 1.5531 | ||
.2 | 1.5531 | 1.5576 | 1.5622 | 1.7184 | 1.7236 | 1.7289 | ||
.6 | 1.4033 | 1.4145 | 1.4267 | 1.8955 | 1.9126 | 1.9307 | ||
1 | 1.2794 | 1.2944 | 1.3121 | 2.0935 | 2.1245 | 2.1584 | ||
30 | 1 | −1 | 0.8693 | 0.8535 | 0.8387 | 0.2796 | 0.2729 | 0.2672 |
−.6 | 0.7052 | 0.6969 | 0.6890 | 0.3536 | 0.3486 | 0.3439 | ||
−.2 | 0.5629 | 0.5606 | 0.5583 | 0.4465 | 0.4445 | 0.4425 | ||
.2 | 0.4425 | 0.4445 | 0.4465 | 0.5583 | 0.5606 | 0.5629 | ||
.6 | 0.3439 | 0.3486 | 0.3536 | 0.6890 | 0.6969 | 0.7052 | ||
1 | 0.2672 | 0.2729 | 0.2796 | 0.8387 | 0.8535 | 0.8693 | ||
2 | −1 | 1.3889 | 1.3690 | 1.3502 | 0.6234 | 0.6142 | 0.6062 | |
−.6 | 1.1806 | 1.1701 | 1.1599 | 0.7238 | 0.7172 | 0.7109 | ||
−.2 | 0.9982 | 0.9951 | 0.9922 | 0.8468 | 0.8442 | 0.8416 | ||
.2 | 0.8416 | 0.8442 | 0.8468 | 0.9922 | 0.9951 | 0.9982 | ||
.6 | 0.7109 | 0.7172 | 0.7238 | 1.1599 | 1.1701 | 1.1806 | ||
1 | 0.6062 | 0.6142 | 0.6234 | 1.3502 | 1.3690 | 1.3889 | ||
3 | −1 | 1.7318 | 1.7101 | 1.6897 | 0.8923 | 0.8820 | 0.8730 | |
−.6 | 1.5052 | 1.4937 | 1.4827 | 1.0042 | 0.9968 | 0.9899 | ||
−.2 | 1.3060 | 1.3027 | 1.2994 | 1.1399 | 1.1370 | 1.1342 | ||
.2 | 1.1342 | 1.1370 | 1.1399 | 1.2994 | 1.3027 | 1.3060 | ||
.6 | 0.9899 | 0.9968 | 1.0042 | 1.4827 | 1.4937 | 1.5052 | ||
1 | 0.8730 | 0.8820 | 0.8923 | 1.6897 | 1.7101 | 1.7318 | ||
4 | −1 | 1.9872 | 1.9650 | 1.9433 | 1.1074 | 1.0965 | 1.0870 | |
−.6 | 1.7507 | 1.7387 | 1.7271 | 1.2256 | 1.2178 | 1.2105 | ||
−.2 | 1.5424 | 1.5389 | 1.5355 | 1.3683 | 1.3653 | 1.3623 | ||
.2 | 1.3623 | 1.3653 | 1.3683 | 1.5355 | 1.5389 | 1.5424 | ||
.6 | 1.2105 | 1.2178 | 1.2256 | 1.7271 | 1.7387 | 1.7507 | ||
1 | 1.0870 | 1.0965 | 1.1074 | 1.9433 | 1.9650 | 1.9872 | ||
5 | −1 | 2.1907 | 2.1675 | 2.1456 | 1.2855 | 1.2743 | 1.2644 | |
−.6 | 1.9479 | 1.9356 | 1.9238 | 1.4077 | 1.3997 | 1.3922 | ||
−.2 | 1.7340 | 1.7303 | 1.7268 | 1.5548 | 1.5517 | 1.5487 | ||
.2 | 1.5487 | 1.5517 | 1.5548 | 1.7268 | 1.7303 | 1.7340 | ||
.6 | 1.3922 | 1.3997 | 1.4077 | 1.9238 | 1.9356 | 1.9479 | ||
1 | 1.2644 | 1.2743 | 1.2855 | 2.1456 | 2.1675 | 2.1907 |
MTTF, mean times to failure.
n | ||||||||
---|---|---|---|---|---|---|---|---|
(1, 2) | (1, 3) | (2, 3) | ||||||
10 | 1 | −1 | 1.9394 | 1.8914 | 1.8359 | 1.1086 | 1.0429 | 0.9697 |
−.6 | 1.7746 | 1.7427 | 1.7082 | 1.2718 | 1.2336 | 1.1927 | ||
−.2 | 1.5952 | 1.5835 | 1.5716 | 1.4262 | 1.4138 | 1.4012 | ||
.2 | 1.4012 | 1.4138 | 1.4262 | 1.5716 | 1.5835 | 1.5952 | ||
.6 | 1.1927 | 1.2336 | 1.2718 | 1.7082 | 1.7427 | 1.7746 | ||
1 | 0.9697 | 1.0429 | 1.1086 | 1.8359 | 1.8914 | 1.9394 | ||
2 | −1 | 2.5628 | 2.5111 | 2.4504 | 1.6504 | 1.5777 | 1.4961 | |
−.6 | 2.3840 | 2.3493 | 2.3115 | 1.8315 | 1.7893 | 1.7439 | ||
−.2 | 2.1878 | 2.1751 | 2.1620 | 2.0020 | 1.9884 | 1.9745 | ||
.2 | 1.9745 | 1.9884 | 2.0020 | 2.1620 | 2.1751 | 2.1878 | ||
.6 | 1.7439 | 1.7893 | 1.8315 | 2.3115 | 2.3493 | 2.3840 | ||
1 | 1.4961 | 1.5777 | 1.6504 | 2.4504 | 2.5111 | 2.5628 | ||
3 | −1 | 2.9441 | 2.8911 | 2.8285 | 2.0017 | 1.9264 | 1.8417 | |
−.6 | 2.7602 | 2.7245 | 2.6855 | 2.1894 | 2.1458 | 2.0987 | ||
−.2 | 2.5580 | 2.5448 | 2.5313 | 2.3659 | 2.3519 | 2.3375 | ||
.2 | 2.3375 | 2.3519 | 2.3659 | 2.5313 | 2.5448 | 2.5580 | ||
.6 | 2.0987 | 2.1458 | 2.1894 | 2.6855 | 2.7245 | 2.7602 | ||
1 | 1.8417 | 1.9264 | 2.0017 | 2.8285 | 2.8911 | 2.9441 | ||
4 | −1 | 3.2196 | 3.1658 | 3.1023 | 2.2615 | 2.1849 | 2.0985 | |
−.6 | 3.0330 | 2.9968 | 2.9572 | 2.4527 | 2.4083 | 2.3604 | ||
−.2 | 2.8276 | 2.8143 | 2.8005 | 2.6323 | 2.6181 | 2.6034 | ||
.2 | 2.6034 | 2.6181 | 2.6323 | 2.8005 | 2.8143 | 2.8276 | ||
.6 | 2.3604 | 2.4083 | 2.4527 | 2.9572 | 2.9968 | 3.0330 | ||
1 | 2.0985 | 2.1849 | 2.2615 | 3.1023 | 3.1658 | 3.2196 | ||
5 | −1 | 3.4353 | 3.3812 | 3.3170 | 2.4677 | 2.3903 | 2.3029 | |
−.6 | 3.2471 | 3.2107 | 3.1706 | 2.6610 | 2.6162 | 2.5677 | ||
−.2 | 3.0398 | 3.0263 | 3.0124 | 2.8426 | 2.8282 | 2.8133 | ||
.2 | 2.8133 | 2.8282 | 2.8426 | 3.0124 | 3.0263 | 3.0398 | ||
.6 | 2.5677 | 2.6162 | 2.6610 | 3.1706 | 3.2107 | 3.2471 | ||
1 | 2.3029 | 2.3903 | 2.4677 | 3.3170 | 3.3812 | 3.4353 | ||
20 | 1 | −1 | 2.0097 | 1.9852 | 1.9585 | 0.9426 | 0.9058 | 0.8669 |
−.6 | 1.8207 | 1.8042 | 1.7870 | 1.1775 | 1.1566 | 1.1349 | ||
−.2 | 1.6118 | 1.6058 | 1.5996 | 1.3964 | 1.3899 | 1.3833 | ||
.2 | 1.3833 | 1.3899 | 1.3964 | 1.5996 | 1.6058 | 1.6118 | ||
.6 | 1.1349 | 1.1566 | 1.1775 | 1.7870 | 1.8042 | 1.8207 | ||
1 | 0.8669 | 0.9058 | 0.9426 | 1.9585 | 1.9852 | 2.0097 | ||
2 | −1 | 2.6388 | 2.6124 | 2.5835 | 1.4660 | 1.4251 | 1.3816 | |
−.6 | 2.4341 | 2.4163 | 2.3975 | 1.7270 | 1.7039 | 1.6799 | ||
−.2 | 2.2061 | 2.1995 | 2.1927 | 1.9692 | 1.9620 | 1.9547 | ||
.2 | 1.9547 | 1.9620 | 1.9692 | 2.1927 | 2.1995 | 2.2061 | ||
.6 | 1.6799 | 1.7039 | 1.7270 | 2.3975 | 2.4163 | 2.4341 | ||
1 | 1.3816 | 1.4251 | 1.4660 | 2.5835 | 2.6124 | 2.6388 | ||
3 | −1 | 3.0221 | 2.9951 | 2.9654 | 1.8104 | 1.7680 | 1.7228 | |
−.6 | 2.8119 | 2.7935 | 2.7741 | 2.0812 | 2.0572 | 2.0323 | ||
−.2 | 2.5768 | 2.5699 | 2.5630 | 2.3320 | 2.3246 | 2.3170 | ||
.2 | 2.3170 | 2.3246 | 2.3320 | 2.5630 | 2.5699 | 2.5768 | ||
.6 | 2.0323 | 2.0572 | 2.0812 | 2.7741 | 2.7935 | 2.8119 | ||
1 | 1.7228 | 1.7680 | 1.8104 | 2.9654 | 2.9951 | 3.0221 | ||
4 | −1 | 3.2986 | 3.2713 | 3.2411 | 2.0667 | 2.0235 | 1.9774 | |
−.6 | 3.0855 | 3.0668 | 3.0472 | 2.3425 | 2.3181 | 2.2928 | ||
−.2 | 2.8468 | 2.8398 | 2.8327 | 2.5979 | 2.5903 | 2.5825 | ||
.2 | 2.5825 | 2.5903 | 2.5979 | 2.8327 | 2.8398 | 2.8468 | ||
.6 | 2.2928 | 2.3181 | 2.3425 | 3.0472 | 3.0668 | 3.0855 | ||
1 | 1.9774 | 2.0235 | 2.0667 | 3.2411 | 3.2713 | 3.2986 | ||
5 | −1 | 3.5150 | 3.4875 | 3.4570 | 2.2707 | 2.2270 | 2.1804 | |
−.6 | 3.3001 | 3.2813 | 3.2614 | 2.5496 | 2.5250 | 2.4993 | ||
−.2 | 3.0592 | 3.0521 | 3.0450 | 2.8077 | 2.8001 | 2.7923 | ||
.2 | 2.7923 | 2.8001 | 2.8077 | 3.0450 | 3.0521 | 3.0592 | ||
.6 | 2.4993 | 2.5250 | 2.5496 | 3.2614 | 3.2813 | 3.3001 | ||
1 | 2.1804 | 2.2270 | 2.2707 | 3.4570 | 3.4875 | 3.5150 | ||
30 | 1 | −1 | 2.0339 | 2.0175 | 2.0000 | 0.8817 | 0.8562 | 0.8296 |
−.6 | 1.8367 | 1.8257 | 1.8142 | 1.1432 | 1.1289 | 1.1142 | ||
−.2 | 1.6177 | 1.6136 | 1.6118 | 1.3858 | 1.3813 | 1.37684 | ||
.2 | 1.3768 | 1.3813 | 1.3858 | 1.6118 | 1.6136 | 1.6177 | ||
.6 | 1.1142 | 1.1289 | 1.1432 | 1.8142 | 1.8257 | 1.8367 | ||
1 | 0.8296 | 0.8562 | 0.8817 | 2.0000 | 2.0175 | 2.0339 | ||
2 | −1 | 2.6648 | 2.6471 | 2.6283 | 1.3982 | 1.3697 | 1.3401 | |
−.6 | 2.4516 | 2.4396 | 2.4271 | 1.6891 | 1.6731 | 1.6568 | ||
−.2 | 2.2126 | 2.2081 | 2.2035 | 1.9575 | 1.9526 | 1.9476 | ||
.2 | 1.9476 | 1.9526 | 1.9575 | 2.2035 | 2.2081 | 2.2126 | ||
.6 | 1.6568 | 1.6731 | 1.6891 | 2.4271 | 2.4396 | 2.4516 | ||
1 | 1.3401 | 1.3697 | 1.3982 | 2.6283 | 2.6471 | 2.6648 | ||
3 | −1 | 3.0489 | 3.0308 | 3.0114 | 1.7399 | 1.7105 | 1.6797 | |
−.6 | 2.8299 | 2.8175 | 2.8047 | 2.0418 | 2.0253 | 2.0084 | ||
−.2 | 2.5835 | 2.5789 | 2.5742 | 2.3199 | 2.3148 | 2.3097 | ||
.2 | 2.3097 | 2.3148 | 2.3199 | 2.5742 | 2.5789 | 2.5835 | ||
.6 | 2.0084 | 2.0253 | 2.0418 | 2.8047 | 2.8175 | 2.8299 | ||
1 | 1.6797 | 1.7105 | 1.7399 | 3.0114 | 3.0308 | 3.0489 | ||
4 | −1 | 3.3257 | 3.3074 | 3.2877 | 1.9949 | 1.9649 | 1.9335 | |
−.6 | 3.1038 | 3.0912 | 3.0782 | 2.3025 | 2.2857 | 2.2684 | ||
−.2 | 2.8536 | 2.8488 | 2.8441 | 2.5855 | 2.5803 | 2.5751 | ||
.2 | 2.5751 | 2.5803 | 2.5855 | 2.8441 | 2.8488 | 2.8536 | ||
.6 | 2.2684 | 2.2857 | 2.3025 | 3.0782 | 3.0912 | 3.1038 | ||
1 | 1.9335 | 1.9649 | 1.9949 | 3.2877 | 3.3074 | 3.3257 | ||
5 | −1 | 3.5423 | 3.5238 | 3.5040 | 2.1981 | 2.1677 | 2.1360 | |
−.6 | 3.3185 | 3.3059 | 3.2927 | 2.5092 | 2.4922 | 2.4747 | ||
−.2 | 3.0660 | 3.0613 | 3.0564 | 2.7953 | 2.7900 | 2.7847 | ||
.2 | 2.7847 | 2.7900 | 2.7953 | 3.0564 | 3.0613 | 3.0660 | ||
.6 | 2.4747 | 2.4922 | 2.5092 | 3.2927 | 3.3059 | 3.3185 | ||
1 | 2.1360 | 2.1677 | 2.1981 | 3.5040 | 3.5238 | 3.5423 |
MTTF, mean times to failure.
The MTTF of a series and parallel system based on independent components are respectively,
Series System, |
|||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
0.5000 | 0.7500 | 0.9167 | 1.0417 | 1.1417 | |
Parallel System, |
|||||
1 | 2 | 3 | 4 | 5 | |
1.5000 | 2.2500 | 2.7500 | 3.1250 | 3.4250 |
Independent case.
The following conclusions are evident from the above Tables.
Comparing Tables 1 and 3, we can say that the selection of components in the series system based on concomitants will substantially increase the MTTF. It follows from Table 1 that if
Series System |
|||||||
---|---|---|---|---|---|---|---|
n | λ | α2 | 1 | 2 | 3 | 4 | 5 |
10 | −.2 | 10.06 | 30.92 | 40.51 | 46.27 | 50.19 | |
−.6 | 32.36 | 50.03 | 57.60 | 61.99 | 64.93 | ||
−1 | 57.58 | 71.43 | 76.67 | 79.52 | 81.35 | ||
20 | −.2 | 11.92 | 32.52 | 41.95 | 47.59 | 51.43 | |
−.6 | 38.72 | 55.45 | 62.44 | 66.44 | 69.11 | ||
−1 | 69.48 | 81.49 | 85.63 | 87.75 | 89.05 | ||
30 | −.2 | 12.58 | 33.09 | 42.47 | 48.07 | 51.88 | |
−.6 | 41.04 | 57.41 | 64.20 | 68.06 | 70.61 | ||
−1 | 73.86 | 85.19 | 88.92 | 90.77 | 91.88 |
MTTF, mean times to failure.
The percentage relative gain in MTTF of a series system.
Similarly, when comparing Tables 2 and 3, we can say that the selection of components in the parallel system based on concomitants will substantially increase the MTTF. It follows from Table 2 that if
n | λ | α2 | Parallel System |
||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
10 | −1 | 29.29 | 13.90 | 7.06 | 3.03 | 0.30 | |
20 | −1 | 33.98 | 17.28 | 9.90 | 5.56 | 2.63 | |
30 | −1 | 35.59 | 18.44 | 10.87 | 6.42 | 3.42 |
MTTF, mean times to failure.
The percentage relative gain in MTTF of a parallel system.
Using relations (4.1) and (4.2), we deduce that the percentage relative gain in the MTTF of series and parallel systems using the
Thus we conclude that the design of two component series or parallel systems using concomitants substantially increases the MTTF of both the systems. Moreover, the selection of components based on concomitants is more effective in series systems than parallel systems. If
ACKNOWLEDGMENTS
The authors are grateful to the editor and reviewers for their suggestions in improving this paper.
REFERENCES
Cite this article
TY - JOUR AU - Johny Scaria AU - Sithara Mohan PY - 2021 DA - 2021/03/30 TI - Dependence Concepts and Reliability Application of Concomitants of Order Statistics from the Morgenstern Family JO - Journal of Statistical Theory and Applications SP - 193 EP - 203 VL - 20 IS - 2 SN - 2214-1766 UR - https://doi.org/10.2991/jsta.d.210325.001 DO - 10.2991/jsta.d.210325.001 ID - Scaria2021 ER -