An Application of Hermite Distribution in Sensitive Surveys
- DOI
- 10.2991/jsta.d.191112.002How to use a DOI?
- Keywords
- Hermite distribution; Randomized response techniques; Sensitive surveys
- Abstract
In this article, we proposed an efficient estimator for estimating population proportion of individuals possessing sensitive attribute in a finite dichotomous population. We used the Hermite distribution to randomize the responses in the randomization design of Kuk [1]. The relative efficiency results depicted that the proposed technique is relatively better than those of Kuk [1], Singh and Grewal [2] and Hussain et al. [3] and Hussain et al. [4].
- Copyright
- © 2019 The Authors. Published by Atlantis Press SARL.
- Open Access
- This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).
1. INTRODUCTION
A random variable
For estimation of population proportion
Kuk [1] modified Warner [5] model and argued that respondents feel insecure to answer a sensitive question, even when it is generated by a randomization device. He suggested using two decks each containing cards of two different colors, say C1 and C2. A respondent belonging to sensitive (non-sensitive) group is directed to use first (second) deck with proportion
Recently, Singh and Grewal [2] argued that the respondent have to report
2. PROPOSED RRT
Suppose, in a sensitive survey, we provide two decks of cards to the respondents. Random number,
On solving (3) for
By (4), the variance of
3. EFFICIENCY COMPARISONS
It is difficult to conclude from analytical comparison, here, so numerical comparisons are made between the proposed RRT and those proposed by Kuk [1], Singh and Grewal [2], Hussain et al. [3] and Hussain et al. [4]. Let
Now, we define the relative efficiency of the proposed estimator
To know the extent of relative efficiency we have computed the
0.1 | 0.2 | 50.116 | 11.084 | 4.263 | 1.805 | 0.1 | 0.2 | 27.497 | 8.393 | 3.387 | 1.993 |
0.3 | 17.432 | 4.263 | 1.989 | 1.802 | 0.3 | 9.184 | 3.893 | 1.887 | 1.99 | ||
0.4 | 9.695 | 2.937 | 1.547 | 1.801 | 0.4 | 4.92 | 2.945 | 1.571 | 1.989 | ||
0.5 | 6.418 | 2.451 | 1.386 | 1.800 | 0.5 | 3.133 | 2.574 | 1.447 | 1.988 | ||
0.6 | 4.642 | 2.217 | 1.307 | 1.800 | 0.6 | 2.172 | 2.385 | 1.384 | 1.988 | ||
0.7 | 3.537 | 2.084 | 1.263 | 1.800 | 0.7 | 1.577 | 2.273 | 1.347 | 1.988 | ||
0.8 | 2.786 | 2.001 | 1.235 | 1.800 | 0.8 | 1.174 | 2.2 | 1.322 | 1.988 | ||
0.9 | 2.244 | 1.945 | 1.217 | 1.800 | 0.9 | 0.885 | 2.148 | 1.305 | 1.988 | ||
0.2 | 0.3 | 66.537 | 31.547 | 11.084 | 1.830 | 0.2 | 0.3 | 37.436 | 21.202 | 7.656 | 2.022 |
0.4 | 20.116 | 9.000 | 3.568 | 1.814 | 0.4 | 10.933 | 7.067 | 2.945 | 2.004 | ||
0.5 | 10.256 | 4.853 | 2.186 | 1.807 | 0.5 | 5.37 | 4.319 | 2.029 | 1.996 | ||
0.6 | 6.379 | 3.411 | 1.705 | 1.803 | 0.6 | 3.202 | 3.313 | 1.693 | 1.991 | ||
0.7 | 4.389 | 2.747 | 1.484 | 1.801 | 0.7 | 2.098 | 2.827 | 1.531 | 1.988 | ||
0.8 | 3.204 | 2.389 | 1.365 | 1.799 | 0.8 | 1.444 | 2.552 | 1.44 | 1.986 | ||
0.9 | 2.425 | 2.175 | 1.293 | 1.798 | 0.9 | 1.016 | 2.38 | 1.382 | 1.985 | ||
0.3 | 0.4 | 76.642 | 57.505 | 19.737 | 1.882 | 0.3 | 0.4 | 43.693 | 37.104 | 12.957 | 2.072 |
0.5 | 21.221 | 14.589 | 5.432 | 1.839 | 0.5 | 11.761 | 10.684 | 4.15 | 2.029 | ||
0.6 | 10.116 | 6.916 | 2.874 | 1.818 | 0.6 | 5.411 | 5.742 | 2.503 | 2.006 | ||
0.7 | 5.945 | 4.322 | 2.009 | 1.805 | 0.7 | 3.041 | 3.996 | 1.921 | 1.993 | ||
0.8 | 3.884 | 3.164 | 1.623 | 1.797 | 0.8 | 1.877 | 3.18 | 1.649 | 1.984 | ||
0.9 | 2.695 | 2.558 | 1.421 | 1.792 | 0.9 | 1.209 | 2.733 | 1.5 | 1.978 | ||
0.4 | 0.5 | 80.432 | 83.274 | 28.326 | 1.958 | 0.4 | 0.5 | 46.27 | 52.785 | 18.184 | 2.135 |
0.6 | 20.747 | 19.611 | 7.105 | 1.871 | 0.6 | 11.669 | 13.914 | 5.227 | 2.054 | ||
0.7 | 9.274 | 8.495 | 3.4 | 1.825 | 0.7 | 5.043 | 6.847 | 2.871 | 2.01 | ||
0.8 | 5.116 | 4.832 | 2.179 | 1.798 | 0.8 | 2.65 | 4.417 | 2.061 | 1.983 | ||
0.9 | 3.126 | 3.24 | 1.648 | 1.781 | 0.9 | 1.509 | 3.313 | 1.693 | 1.965 | ||
0.5 | 0.6 | 77.905 | 103.168 | 34.958 | 2.045 | 0.5 | 0.6 | 45.166 | 64.933 | 22.233 | 2.191 |
0.7 | 18.695 | 22.642 | 8.116 | 1.895 | 0.7 | 10.656 | 15.929 | 5.899 | 2.063 | ||
0.8 | 7.73 | 8.958 | 3.554 | 1.816 | 0.8 | 4.266 | 7.264 | 3.01 | 1.992 | ||
0.9 | 3.892 | 4.583 | 2.096 | 1.77 | 0.9 | 2.029 | 4.369 | 2.045 | 1.947 | ||
0.6 | 0.7 | 69.063 | 111.505 | 37.737 | 2.108 | 0.6 | 0.7 | 40.38 | 70.233 | 24 | 2.207 |
0.8 | 15.063 | 22.263 | 7.989 | 1.883 | 0.8 | 8.724 | 15.902 | 5.89 | 2.029 | ||
0.9 | 5.484 | 7.674 | 3.126 | 1.765 | 0.9 | 3.08 | 6.626 | 2.798 | 1.929 | ||
0.7 | 0.8 | 53.905 | 102.6 | 34.768 | 2.083 | 0.7 | 0.8 | 31.914 | 65.374 | 22.38 | 2.136 |
0.9 | 9.853 | 17.053 | 6.253 | 1.784 | 0.9 | 5.871 | 13.003 | 4.923 | 1.913 | ||
0.8 | 0.9 | 32.432 | 70.768 | 24.158 | 1.868 | 0.8 | 0.9 | 19.767 | 47.043 | 16.27 | 1.907 |
Relative efficiency of
0.1 | 0.2 | 20.324 | 7.817 | 3.197 | 2.161 | 0.1 | 0.2 | 16.971 | 7.935 | 3.233 | 2.358 |
0.3 | 6.873 | 3.972 | 1.915 | 2.157 | 0.3 | 5.767 | 4.243 | 2.002 | 2.354 | ||
0.4 | 3.798 | 3.113 | 1.629 | 2.156 | 0.4 | 3.257 | 3.38 | 1.714 | 2.352 | ||
0.5 | 2.525 | 2.762 | 1.512 | 2.156 | 0.5 | 2.232 | 3.017 | 1.593 | 2.352 | ||
0.6 | 1.845 | 2.577 | 1.451 | 2.155 | 0.6 | 1.69 | 2.821 | 1.528 | 2.351 | ||
0.7 | 1.427 | 2.465 | 1.413 | 2.155 | 0.7 | 1.359 | 2.7 | 1.488 | 2.351 | ||
0.8 | 1.146 | 2.389 | 1.388 | 2.155 | 0.8 | 1.138 | 2.618 | 1.46 | 2.351 | ||
0.9 | 0.945 | 2.336 | 1.37 | 2.155 | 0.9 | 0.98 | 2.559 | 1.441 | 2.351 | ||
0.2 | 0.3 | 28.211 | 18.296 | 6.69 | 2.193 | 0.2 | 0.3 | 24.073 | 17.633 | 6.465 | 2.395 |
0.4 | 8.352 | 6.718 | 2.831 | 2.173 | 0.4 | 7.176 | 6.906 | 2.89 | 2.372 | ||
0.5 | 4.236 | 4.362 | 2.045 | 2.164 | 0.5 | 3.72 | 4.637 | 2.133 | 2.362 | ||
0.6 | 2.648 | 3.465 | 1.746 | 2.159 | 0.6 | 2.4 | 3.747 | 1.837 | 2.356 | ||
0.7 | 1.845 | 3.017 | 1.597 | 2.156 | 0.7 | 1.739 | 3.291 | 1.685 | 2.352 | ||
0.8 | 1.372 | 2.756 | 1.51 | 2.153 | 0.8 | 1.352 | 3.02 | 1.595 | 2.349 | ||
0.9 | 1.066 | 2.588 | 1.454 | 2.152 | 0.9 | 1.103 | 2.843 | 1.535 | 2.348 | ||
0.3 | 0.4 | 33.282 | 31.056 | 10.944 | 2.248 | 0.3 | 0.4 | 28.727 | 29.241 | 10.335 | 2.456 |
0.5 | 9.127 | 9.761 | 3.845 | 2.201 | 0.5 | 7.971 | 9.79 | 3.851 | 2.403 | ||
0.6 | 4.362 | 5.62 | 2.465 | 2.176 | 0.6 | 3.91 | 5.878 | 2.547 | 2.374 | ||
0.7 | 2.595 | 4.104 | 1.96 | 2.16 | 0.7 | 2.415 | 4.404 | 2.056 | 2.357 | ||
0.8 | 1.732 | 3.372 | 1.715 | 2.15 | 0.8 | 1.69 | 3.673 | 1.812 | 2.346 | ||
0.9 | 1.239 | 2.958 | 1.577 | 2.143 | 0.9 | 1.278 | 3.251 | 1.671 | 2.338 | ||
0.4 | 0.5 | 35.535 | 43.563 | 15.113 | 2.31 | 0.4 | 0.5 | 30.931 | 40.555 | 14.106 | 2.523 |
0.6 | 9.197 | 12.465 | 4.746 | 2.226 | 0.6 | 8.155 | 12.343 | 4.702 | 2.43 | ||
0.7 | 4.174 | 6.606 | 2.793 | 2.178 | 0.7 | 3.829 | 6.857 | 2.873 | 2.376 | ||
0.8 | 2.366 | 4.521 | 2.099 | 2.148 | 0.8 | 2.278 | 4.849 | 2.204 | 2.343 | ||
0.9 | 1.507 | 3.541 | 1.772 | 2.128 | 0.9 | 1.543 | 3.879 | 1.881 | 2.32 | ||
0.5 | 0.6 | 34.972 | 53.282 | 18.352 | 2.356 | 0.5 | 0.6 | 30.686 | 49.371 | 17.045 | 2.566 |
0.7 | 8.563 | 14.197 | 5.324 | 2.228 | 0.7 | 7.727 | 14.014 | 5.259 | 2.428 | ||
0.8 | 3.673 | 7.038 | 2.937 | 2.154 | 0.8 | 3.475 | 7.331 | 3.031 | 2.347 | ||
0.9 | 1.961 | 4.558 | 2.111 | 2.107 | 0.9 | 1.987 | 4.945 | 2.236 | 2.294 | ||
0.6 | 0.7 | 31.592 | 57.676 | 19.817 | 2.353 | 0.6 | 0.7 | 27.992 | 53.486 | 18.416 | 2.55 |
0.8 | 7.225 | 14.324 | 5.366 | 2.181 | 0.8 | 6.686 | 14.253 | 5.339 | 2.369 | ||
0.9 | 2.859 | 6.634 | 2.803 | 2.08 | 0.9 | 2.849 | 7.053 | 2.939 | 2.26 | ||
0.7 | 0.8 | 25.394 | 54.211 | 18.662 | 2.256 | 0.7 | 0.8 | 22.849 | 50.694 | 17.486 | 2.427 |
0.9 | 5.183 | 12.211 | 4.662 | 2.048 | 0.9 | 5.033 | 12.508 | 4.757 | 2.214 | ||
0.8 | 0.9 | 16.38 | 40.352 | 14.042 | 2.000 | 0.8 | 0.9 | 15.257 | 38.792 | 13.518 | 2.136 |
Relative efficiency of
0.1 | 0.2 | 15.324 | 8.514 | 3.417 | 2.615 | 0.1 | 0.2 | 14.753 | 9.6 | 3.765 | 2.975 |
0.3 | 5.189 | 4.691 | 2.143 | 2.61 | 0.3 | 4.929 | 5.382 | 2.359 | 2.969 | ||
0.4 | 2.969 | 3.764 | 1.834 | 2.608 | 0.4 | 2.831 | 4.329 | 2.008 | 2.967 | ||
0.5 | 2.076 | 3.366 | 1.701 | 2.607 | 0.5 | 2.003 | 3.869 | 1.854 | 2.966 | ||
0.6 | 1.61 | 3.148 | 1.629 | 2.607 | 0.6 | 1.576 | 3.614 | 1.769 | 2.965 | ||
0.7 | 1.328 | 3.012 | 1.583 | 2.606 | 0.7 | 1.322 | 3.453 | 1.716 | 2.965 | ||
0.8 | 1.141 | 2.918 | 1.552 | 2.606 | 0.8 | 1.154 | 3.342 | 1.679 | 2.964 | ||
0.9 | 1.008 | 2.851 | 1.529 | 2.606 | 0.9 | 1.036 | 3.261 | 1.652 | 2.964 | ||
0.2 | 0.3 | 22.274 | 18.243 | 6.66 | 2.658 | 0.2 | 0.3 | 22.047 | 20.047 | 7.247 | 3.027 |
0.4 | 6.637 | 7.471 | 3.069 | 2.631 | 0.4 | 6.518 | 8.471 | 3.388 | 2.995 | ||
0.5 | 3.484 | 5.116 | 2.284 | 2.619 | 0.5 | 3.433 | 5.867 | 2.52 | 2.98 | ||
0.6 | 2.293 | 4.17 | 1.969 | 2.612 | 0.6 | 2.282 | 4.8 | 2.165 | 2.971 | ||
0.7 | 1.703 | 3.676 | 1.805 | 2.607 | 0.7 | 1.718 | 4.235 | 1.976 | 2.966 | ||
0.8 | 1.36 | 3.378 | 1.705 | 2.604 | 0.8 | 1.393 | 3.89 | 1.861 | 2.962 | ||
0.9 | 1.141 | 3.181 | 1.639 | 2.602 | 0.9 | 1.188 | 3.659 | 1.784 | 2.96 | ||
0.3 | 0.4 | 26.907 | 29.71 | 10.483 | 2.729 | 0.3 | 0.4 | 26.988 | 32.188 | 11.294 | 3.113 |
0.5 | 7.506 | 10.425 | 4.054 | 2.667 | 0.5 | 7.518 | 11.7 | 4.465 | 3.038 | ||
0.6 | 3.741 | 6.429 | 2.722 | 2.634 | 0.6 | 3.773 | 7.341 | 3.012 | 2.998 | ||
0.7 | 2.366 | 4.887 | 2.208 | 2.613 | 0.7 | 2.415 | 5.625 | 2.44 | 2.973 | ||
0.8 | 1.703 | 4.107 | 1.948 | 2.6 | 0.8 | 1.765 | 4.744 | 2.146 | 2.957 | ||
0.9 | 1.328 | 3.649 | 1.795 | 2.59 | 0.9 | 1.4 | 4.218 | 1.971 | 2.945 | ||
0.4 | 0.5 | 29.224 | 40.83 | 14.189 | 2.803 | 0.4 | 0.5 | 29.576 | 43.906 | 15.2 | 3.2 |
0.6 | 7.795 | 13.031 | 4.923 | 2.697 | 0.6 | 7.929 | 14.541 | 5.412 | 3.073 | ||
0.7 | 3.741 | 7.471 | 3.069 | 2.635 | 0.7 | 3.851 | 8.518 | 3.404 | 2.999 | ||
0.8 | 2.293 | 5.386 | 2.375 | 2.596 | 0.8 | 2.4 | 6.212 | 2.635 | 2.952 | ||
0.9 | 1.61 | 4.358 | 2.032 | 2.569 | 0.9 | 1.718 | 5.054 | 2.249 | 2.919 | ||
0.5 | 0.6 | 29.224 | 49.517 | 17.085 | 2.847 | 0.5 | 0.6 | 29.812 | 53.082 | 18.259 | 3.248 |
0.7 | 7.506 | 14.768 | 5.502 | 2.692 | 0.7 | 7.753 | 16.465 | 6.053 | 3.064 | ||
0.8 | 3.484 | 8.012 | 3.25 | 2.599 | 0.8 | 3.668 | 9.161 | 3.618 | 2.954 | ||
0.9 | 2.076 | 5.538 | 2.425 | 2.538 | 0.9 | 2.238 | 6.428 | 2.707 | 2.881 | ||
0.6 | 0.7 | 26.907 | 53.687 | 18.475 | 2.82 | 0.6 | 0.7 | 27.694 | 57.6 | 19.765 | 3.207 |
0.8 | 6.637 | 15.116 | 5.618 | 2.618 | 0.8 | 6.988 | 16.941 | 6.212 | 2.972 | ||
0.9 | 2.969 | 7.819 | 3.185 | 2.496 | 0.9 | 3.224 | 9.035 | 3.576 | 2.828 | ||
0.7 | 0.8 | 22.274 | 51.255 | 17.664 | 2.668 | 0.7 | 0.8 | 23.224 | 55.341 | 19.012 | 3.017 |
0.9 | 5.189 | 13.552 | 5.097 | 2.436 | 0.9 | 5.635 | 15.441 | 5.712 | 2.75 | ||
0.8 | 0.9 | 15.324 | 40.135 | 13.958 | 2.327 | 0.8 | 0.9 | 16.4 | 44.188 | 15.294 | 2.604 |
Relative efficiency of
0.1 | 0.2 | 15.18 | 11.472 | 4.365 | 3.528 | 0.1 | 0.2 | 17.067 | 14.922 | 5.472 | 4.495 |
0.3 | 4.944 | 6.489 | 2.704 | 3.52 | 0.3 | 5.332 | 8.464 | 3.319 | 4.484 | ||
0.4 | 2.82 | 5.215 | 2.279 | 3.518 | 0.4 | 2.974 | 6.777 | 2.756 | 4.48 | ||
0.5 | 1.999 | 4.65 | 2.091 | 3.516 | 0.5 | 2.087 | 6.021 | 2.505 | 4.478 | ||
0.6 | 1.584 | 4.334 | 1.985 | 3.516 | 0.6 | 1.648 | 5.596 | 2.363 | 4.477 | ||
0.7 | 1.339 | 4.133 | 1.918 | 3.515 | 0.7 | 1.394 | 5.324 | 2.272 | 4.477 | ||
0.8 | 1.18 | 3.994 | 1.872 | 3.515 | 0.8 | 1.231 | 5.135 | 2.209 | 4.476 | ||
0.9 | 1.069 | 3.893 | 1.838 | 3.515 | 0.9 | 1.12 | 4.997 | 2.163 | 4.476 | ||
0.2 | 0.3 | 23.421 | 23.524 | 8.382 | 3.595 | 0.2 | 0.3 | 27.326 | 30.218 | 10.57 | 4.587 |
0.4 | 6.811 | 10.159 | 3.927 | 3.554 | 0.4 | 7.741 | 13.244 | 4.912 | 4.53 | ||
0.5 | 3.564 | 7.077 | 2.9 | 3.534 | 0.5 | 3.976 | 9.244 | 3.579 | 4.503 | ||
0.6 | 2.369 | 5.794 | 2.472 | 3.523 | 0.6 | 2.611 | 7.554 | 3.016 | 4.488 | ||
0.7 | 1.79 | 5.106 | 2.243 | 3.516 | 0.7 | 1.959 | 6.64 | 2.711 | 4.479 | ||
0.8 | 1.461 | 4.682 | 2.102 | 3.512 | 0.8 | 1.592 | 6.073 | 2.522 | 4.472 | ||
0.9 | 1.254 | 4.396 | 2.006 | 3.509 | 0.9 | 1.365 | 5.687 | 2.393 | 4.468 | ||
0.3 | 0.4 | 29.086 | 37.352 | 12.991 | 3.703 | 0.3 | 0.4 | 34.477 | 47.565 | 16.352 | 4.735 |
0.5 | 8.034 | 13.944 | 5.189 | 3.608 | 0.5 | 9.373 | 18.117 | 6.536 | 4.605 | ||
0.6 | 4.021 | 8.845 | 3.489 | 3.557 | 0.6 | 4.632 | 11.565 | 4.352 | 4.535 | ||
0.7 | 2.578 | 6.803 | 2.808 | 3.526 | 0.7 | 2.942 | 8.901 | 3.464 | 4.492 | ||
0.8 | 1.893 | 5.74 | 2.454 | 3.505 | 0.8 | 2.145 | 7.498 | 2.997 | 4.463 | ||
0.9 | 1.511 | 5.099 | 2.24 | 3.49 | 0.9 | 1.705 | 6.645 | 2.712 | 4.443 | ||
0.4 | 0.5 | 32.176 | 50.639 | 17.421 | 3.812 | 0.4 | 0.5 | 38.518 | 64.166 | 21.886 | 4.881 |
0.6 | 8.614 | 17.266 | 6.296 | 3.651 | 0.6 | 10.228 | 22.383 | 7.959 | 4.663 | ||
0.7 | 4.193 | 10.262 | 3.961 | 3.558 | 0.7 | 4.943 | 13.43 | 4.974 | 4.535 | ||
0.8 | 2.627 | 7.532 | 3.052 | 3.498 | 0.8 | 3.078 | 9.886 | 3.793 | 4.453 | ||
0.9 | 1.893 | 6.142 | 2.588 | 3.457 | 0.9 | 2.207 | 8.058 | 3.183 | 4.396 | ||
0.5 | 0.6 | 32.691 | 61.069 | 20.897 | 3.867 | 0.5 | 0.6 | 39.451 | 77.223 | 26.238 | 4.953 |
0.7 | 8.549 | 19.545 | 7.056 | 3.638 | 0.7 | 10.306 | 25.345 | 8.946 | 4.642 | ||
0.8 | 4.079 | 11.069 | 4.23 | 3.499 | 0.8 | 4.908 | 14.528 | 5.34 | 4.453 | ||
0.9 | 2.514 | 7.836 | 3.153 | 3.407 | 0.9 | 3.019 | 10.335 | 3.942 | 4.327 | ||
0.6 | 0.7 | 30.631 | 66.322 | 22.648 | 3.808 | 0.6 | 0.7 | 37.275 | 83.938 | 28.477 | 4.864 |
0.8 | 7.841 | 20.202 | 7.275 | 3.518 | 0.8 | 9.606 | 26.301 | 9.264 | 4.474 | ||
0.9 | 3.678 | 11.009 | 4.21 | 3.339 | 0.9 | 4.528 | 14.549 | 5.347 | 4.231 | ||
0.7 | 0.8 | 25.996 | 64.082 | 21.901 | 3.56 | 0.7 | 0.8 | 31.99 | 81.513 | 27.668 | 4.517 |
0.9 | 6.489 | 18.657 | 6.76 | 3.234 | 0.9 | 8.13 | 24.552 | 8.681 | 4.082 | ||
0.8 | 0.9 | 18.785 | 52.03 | 17.884 | 3.036 | 0.8 | 0.9 | 23.596 | 67.15 | 22.881 | 3.796 |
Relative efficiency of
0.1 | 0.2 | 22.467 | 22.733 | 7.978 | 6.629 | 0.3 | 0.7 | 3.828 | 13.575 | 4.925 | 6.624 |
0.3 | 6.578 | 12.867 | 4.689 | 6.612 | 0.8 | 2.733 | 11.4 | 4.2 | 6.578 | ||
0.4 | 3.504 | 10.244 | 3.815 | 6.606 | 0.9 | 2.133 | 10.067 | 3.756 | 6.545 | ||
0.5 | 2.383 | 9.058 | 3.419 | 6.603 | 0.4 | 0.5 | 54.467 | 95.933 | 32.378 | 7.245 | |
0.6 | 1.844 | 8.387 | 3.196 | 6.601 | 0.6 | 14.244 | 34.067 | 11.756 | 6.897 | ||
0.7 | 1.541 | 7.956 | 3.052 | 6.6 | 0.7 | 6.763 | 20.556 | 7.252 | 6.693 | ||
0.8 | 1.351 | 7.656 | 2.952 | 6.599 | 0.8 | 4.133 | 15.133 | 5.444 | 6.561 | ||
0.9 | 1.224 | 7.435 | 2.878 | 6.599 | 0.9 | 2.911 | 12.307 | 4.502 | 6.47 | ||
0.2 | 0.3 | 37.578 | 45.667 | 15.622 | 6.777 | 0.5 | 0.6 | 56.244 | 115.267 | 38.822 | 7.353 |
0.4 | 10.244 | 20.2 | 7.133 | 6.686 | 0.7 | 14.578 | 38.6 | 13.267 | 6.861 | ||
0.5 | 5.084 | 14.081 | 5.094 | 6.643 | 0.8 | 6.862 | 22.304 | 7.835 | 6.56 | ||
0.6 | 3.244 | 11.467 | 4.222 | 6.618 | 0.9 | 4.161 | 15.892 | 5.697 | 6.359 | ||
0.7 | 2.378 | 10.04 | 3.747 | 6.603 | 0.6 | 0.7 | 53.578 | 125.4 | 42.2 | 7.202 | |
0.8 | 1.899 | 9.148 | 3.449 | 6.593 | 0.8 | 13.8 | 40.2 | 13.8 | 6.588 | ||
0.9 | 1.605 | 8.54 | 3.247 | 6.586 | 0.9 | 6.467 | 22.467 | 7.889 | 6.203 | ||
0.3 | 0.4 | 48.244 | 71.4 | 24.2 | 7.014 | 0.7 | 0.8 | 46.467 | 122.333 | 41.178 | 6.637 |
0.5 | 12.8 | 27.6 | 9.6 | 6.806 | 0.9 | 11.911 | 37.867 | 13.022 | 5.957 | ||
0.6 | 6.17 | 17.667 | 6.289 | 6.693 | 0.8 | 0.9 | 34.911 | 102.067 | 34.422 | 5.481 |
Relative efficiency of
4. DISCUSSIONS OF RESULTS
From Tables 1–5, it is observed that the proposed estimator performs better than all the considered estimators over the whole range of
CONFLICT OF INTEREST
There are no conflicts of interest among the authors.
AUTHORS' CONTRIBUTIONS
Zawar Hussain and Said Farooq Shah conceived the idea and contributed in calculation of results and writing of the manuscript.
Funding Statement
There is no funding for this work.
Cite this article
TY - JOUR AU - Said Farooq Shah AU - Zawar Hussain PY - 2019 DA - 2019/11/21 TI - An Application of Hermite Distribution in Sensitive Surveys JO - Journal of Statistical Theory and Applications SP - 361 EP - 366 VL - 18 IS - 4 SN - 2214-1766 UR - https://doi.org/10.2991/jsta.d.191112.002 DO - 10.2991/jsta.d.191112.002 ID - Shah2019 ER -