A View on Fuzzy Systems for Big Data: Progress and Opportunities
- DOI
- 10.1080/18756891.2016.1180820How to use a DOI?
- Keywords
- Big Data; Fuzzy Rule Based Classification Systems; Clustering; MapReduce; Hadoop; Spark; Flink
- Abstract
Currently, we are witnessing a growing trend in the study and application of problems in the framework of Big Data. This is mainly due to the great advantages which come from the knowledge extraction from a high volume of information. For this reason, we observe a migration of the standard Data Mining systems towards a new functional paradigm that allows at working with Big Data. By means of the MapReduce model and its different extensions, scalability can be successfully addressed, while maintaining a good fault tolerance during the execution of the algorithms. Among the different approaches used in Data Mining, those models based on fuzzy systems stand out for many applications. Among their advantages, we must stress the use of a representation close to the natural language. Additionally, they use an inference model that allows a good adaptation to different scenarios, especially those with a given degree of uncertainty. Despite the success of this type of systems, their migration to the Big Data environment in the different learning areas is at a preliminary stage yet. In this paper, we will carry out an overview of the main existing proposals on the topic, analyzing the design of these models. Additionally, we will discuss those problems related to the data distribution and parallelization of the current algorithms, and also its relationship with the fuzzy representation of the information. Finally, we will provide our view on the expectations for the future in this framework according to the design of those methods based on fuzzy sets, as well as the open challenges on the topic.
- Copyright
- © 2016. the authors. Co-published by Atlantis Press and Taylor & Francis
- Open Access
- This is an open access article under the CC BY-NC license (http://creativecommons.org/licences/by-nc/4.0/).
Download article (PDF)
View full text (HTML)
Cite this article
TY - JOUR AU - Alberto Fernández AU - Cristobal José Carmona AU - María José del Jesus AU - Francisco Herrera PY - 2016 DA - 2016/04/01 TI - A View on Fuzzy Systems for Big Data: Progress and Opportunities JO - International Journal of Computational Intelligence Systems SP - 69 EP - 80 VL - 9 IS - Supplement 1 SN - 1875-6883 UR - https://doi.org/10.1080/18756891.2016.1180820 DO - 10.1080/18756891.2016.1180820 ID - Fernández2016 ER -