A Comparative Study of Various Probability Density Estimation Methods for Data Analysis
- DOI
- 10.2991/ijcis.2008.1.2.9How to use a DOI?
- Keywords
- Probability Density Function estimation, Parzen windows, finite Gaussian mixtures
- Abstract
Probability density estimation (PDF) is a task of primary importance in many contexts, including Bayesian learning and novelty detection. Despite the wide variety of methods at disposal to estimate PDF, only a few of them are widely used in practice by data analysts. Among the most used methods are the histograms, Parzen windows, vector quantization based Parzen, and finite Gaussian mixtures. This paper compares these estimations methods from a practical point of view, i.e. when the user is faced to various requirements from the applications. In particular it addresses the question of which method to use when the learning sample is large or small, and of the computational complexity resulting from the choice (by cross-validation methods) of external parameters such as the number of kernels and their widths in kernel mixture models, the robustness to initial conditions, etc. Expected behaviour of the estimation algorithms is drawn from an algorithmic perspective; numerical experiments are used to illustrate these results.
- Copyright
- © 2008, the Authors. Published by Atlantis Press.
- Open Access
- This is an open access article distributed under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Cite this article
TY - JOUR AU - Alex Assenza AU - Maurizio Valle AU - Michel Verleysen PY - 2008 DA - 2008/06/23 TI - A Comparative Study of Various Probability Density Estimation Methods for Data Analysis JO - International Journal of Computational Intelligence Systems SP - 188 EP - 201 VL - 1 IS - 2 SN - 1875-6883 UR - https://doi.org/10.2991/ijcis.2008.1.2.9 DO - 10.2991/ijcis.2008.1.2.9 ID - Assenza2008 ER -