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Abstract 

In this paper, an extended method for ontology learning 

from concept maps is presented. Concept maps are a flex-

ible and informal knowledge representation, while ontol-

ogies are semantically formalized representations oriented 

to be processing by intelligent systems. The mapping be-

tween them is a formal transformation based on semantics 

inference in concept maps. OpenCyc and domain ontolo-

gies are used in a combined way with WordNet for 

increasing the coverage in the semantics inference in the 

concept map and the method’s applicability. The novel 

proposal is experimentally evaluated using concept maps 

from published works with satisfactory and promising re-

sults. 

Keywords: concept maps, semantic inference, and ontol-

ogy learning 

1. Introduction 

In most scientific domains, information needs sometimes 

to be analyzed and processed by machines. In the 

knowledge representation oriented to the semantic analy-

sis and processing by machines, context in which a cer-

tain degree of formalization is required, the development 

and use of ontologies is increasingly common. Several 

methods, methodologies and tools for ontology construc-

tions have been reported; arising the ontology engineering 

as a new discipline [3]. However, the processes for design 

and creation of ontologies, the tools available, such as 

Protégé [14], and specification languages are still com-

plex for non-experts in this subject. This suggests the use 

of a knowledge representation form that can be used natu-

rally by humans and integrated with ontologies in such a 

way that the latter can be obtained automatically; such as 

the Concept Maps (CMs). 

CMs are graphical tools for organizing and representing 

knowledge [13], were defined for application in the 

learning process and they are easy to be created, flexible 

and intuitive for people. They include concepts, linking 

words or linking phrases, to specify the type of 

relationships between concepts, and propositions, which 

contain two or more concepts, connected using linking 

phrases to form a meaningful statement.  

CMs are one of these human-friendly knowledge repre-

sentations, very useful for the ontology engineering, 

mainly as informal representation of a conceptualization 

in the ontology construction process [6],[10],[17], and in 

methods to automatically ontology construction 

[1],[4],[7],[9],[18]. Many of these approaches show 

limited in the semantic inference capacity on the CM, 

without reducing its flexibility. This paper presents a 

novel proposal for increasing these capabilities, extending 

an ontology learning method with other knowledge bases 

as OpenCyc and domain ontologies. Coverage is the 

metrics defined to measure the capacity in terms of 

semantics inference implicit in the CM. The proposal is 

evaluated experimentally using 50 selected CMs from 

scientist papers and about environmental domain. 

2. Concept Mapping in the Ontology Engineering 

CMs are a graphically rich technique for organizing and 

representing knowledge and proposed by Novak and 

Gowin [13]; especially defined for application in the 

learning process. They are easy to be created, flexible and 

intuitive for people, and are especially useful for concep-

tual-knowledge management. They include concepts, la-

beled relationship by linking-words and propositions. 

CMs’ propositions contain two or more concepts connect-

ed using linking-words (lw) and sometimes are called se-

mantic units, or units of meaning. 

CMs usually have a hierarchical structure and express 

the most significant understanding of a knowledge do-

main, but they can integrate concepts from different do-

mains. They have been considered a very useful for on-

tology engineering processes, mainly as informal repre-

sentation of a conceptualization in ontology construction 

process [6],[10],[17], and as starting point in methods to 

automatically ontology construction [1],[4],[7],[9],[18]. 

The mapping between CMs and ontologies creates the ba-

ses for the collaborative development of ontologies in a 

more intuitive, friendlier manner for humans and allows 

the reuse of the knowledge represented in CMs by 

knowledge management systems 

   The automatically ontologies construction from CMs 

is pursued through structural mapping between both rep-

resentations [8],[17]. Knowledge in ontologies is formal-

ized using classes, properties, and instances [17], while in 

CMs this semantic aspects must be inferred. Knowledge 

in CMs is not formalized and its semantics is implicit, be-

cause they have been defined to be used and interpreted 

by people and not by computer systems.  

Some contributions are based on a conceptualization 

represented in CM form and carry out the formalization 
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and an encoding in OWL of that knowledge, as a two-part 

process: semantic inference in CMs and codification us-

ing an ontology formal language. Several difficulties are 

present in these methods related to: insufficient semantic 

inference from CMs, use CMs formalizations on reducing 

its flexibility, and they don’t treat CMs concepts ambigui-

ty, on which propose improvements in [18]. However, 

implicit semantic inference from CMs, in which flexibil-

ity in its construction is kept, should be increased to ob-

tain better ontologies.  

In this paper is proposed and experimentally demon-

strated these capabilities increase, including the ontology 

learning method, using already established knowledge 

resources. We have developed an extension of the method 

reported in [18], with OpenCyc upper ontology and 

mechanisms for processing an ontology corpus, related to 

a specific domain. This extension is based on utility of 

reusing existing knowledge for creating new knowledge, 

using especially well formalized knowledge. 

3. Knowledge Bases to Semantic Inference in Concept 

Maps  

The use of knowledge bases for semantic inference asso-

ciated to concepts and propositions in CMs for ontology 

learning have been previously considered [1],[4][17]; par-

ticularly WordNet [12]. The reuse of existing knowledge 

for creating new knowledge is frequently used today. 

  WordNet is a lexical knowledge base, whose basic struc-

ture is the synset. The synset defines the meaning of a 

word, which, in the case of polysemy, can be found in 

various synsets. Synsets form a semantic network and are 

interconnected among themselves by several types of re-

lations, some of which are used for semantic inferring in 

the CM [1][17], such as hypernymy-hyponymy (to infer 

class/subclass relations between concepts) and meronymy-

holonymy (to infer part/whole relations between con-

cepts). WordNet can be used as ontology if its links are 

associated to a formal semantics.  

However, WordNet provides satisfactory results in con-

ceptualizations of general domain, whose concepts are 

simple terms, and not in specific domains of knowledge. 

Therefore, the only used of WordNet as knowledge base 

in the required semantic inference in the CM is consid-

ered insufficient and the covering of the method spreads 

to be low. In this paper, we propose extending and com-

bine the knowledge bases of the ontology learning meth-

od with the upper ontology OpenCyc and the use of do-

main ontologies contained in a corpus for reducing the 

exposed limitations.  

The upper ontology OpenCyc was proposed to extend 

the general domain terminology and use other taxonomic 

and semantics relations not included in WordNet. At the 

same time, domain ontologies allows using knowledge 

bases of specific domain in the ontology learning from 

CM, therefore it would be useful for coverage increasing 

in specific domain CM and extending the applicability of 

the method. The use other knowledge bases (in addition 

to WordNet) for automatic ontology construction from 

CM has not been reported.   

 

3.1. OpenCyc 

OpenCyc is the free version of the Cyc knowledge base 

[10], one of the most important results of Cyc Project. 

OpenCyc represents an upper ontology, which included a 

taxonomy of concepts, relations, properties, restrictions 

and instances codified in CycL are included in OpenCyc, 

for describing objects and events related to the daily life, 

and using 250 000 words and 15 000 predicates. OpenCyc 

has been used in several contexts, such as: word sense 

disambiguation, ontology mapping, and in the metadata 

semantic integrations, but not in the ontology learning 

from CMs. This upper ontology can be used for semantics 

inference about classes, subclasses and instances in the 

CM, through the concept identification in predicates: 

     

 genls: for representing class - subclass relations, e.g.: 

#$genls C’ C, where C’ is subclass of C. 

 isa: for representing an instance of a collection, e.g. 

#$isa I C, where I is an instance of C.  

 

The most of information in this upper ontology is rep-

resented through these types of predicate.  

 

3.2. Domain Ontologies Processing 

Domains ontologies allow identify semantic infor-

mation related to concepts and relations between them in 

the CM, such as: class-subclass, class-instance, class-

property, among others, mainly in specific domain con-

texts. An Ontology Corpus (OC) is defined for containing 

the domain ontologies to be used, which may have one or 

more ontologies according to the necessities and the users' 

readiness. The use of OWL language [19] for codifying 

all domain ontologies is required.  

In OC, not all domain ontologies provide the same se-

mantic information; therefore the occurrence of semantic 

conflicts is possible. A procedure based on selecting the 

most relevant domain ontologies (reference ontologies) 

for the CM that is being processed was proposed, as a 

way for reducing the problem previously referred. More-

over, knowledge contained in the corpus can be use more 

efficiently. Figure 1 shows a graphical view of the refer-

ence ontologies selection procedure. 

 

 
Fig. 1: Procedure for selecting reference domain ontologies. 
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In the selection of relevant domain ontologies to specif-

ic CM the comparison between the knowledge represent-

ed in both knowledge models is required, but this is not 

directly appropriate. Therefore, the use of a common rep-

resentation model, specifically CM model, was consid-

ered as solution. 

The procedure is defined in three steps: conceptualiza-

tion extraction, conceptual relevance analysis, and refer-

ence ontologies identification. In first step, the conceptu-

alization of domain ontologies is extracted and represent-

ed in CM form,   which is carried out using the method 

reported in [8] for automatically obtaining  a CM form an 

ontology. In second step, the conceptual relevance analy-

sis of the domain ontologies is carried out.  The analysis 

is based on the identification of conceptual connections 

between a CM and the domain ontologies (whose 

knowledge is resented in CM form) through apply the 

CMs comparison algorithms reported in [2]. This algo-

rithm allows obtaining a similarity value between two 

CMs, using fewer computational resources in its imple-

mentation, and it is one of the most used for this purpose. 

When all conceptualizations of the domain ontologies are 

analyzed and an ordered list (by similarity value) is ob-

tained the step is finished. In the third step, the 25% most 

similar conceptualization to the CM being processing, ac-

cording results of previous step, are identified and whose 

corresponding reference ontologies are selected as 

knowledge bases for semantic inference process.  

4. Ontology Learning Method 

The method for obtaining the OWL ontology from a 

CM is organized in three phases: preprocessing, semantic 

mapping and OWL codification [18], as shown in Figure 

2. Four components are defined for the implementation of 

the system: parser, disambiguator, semantic interpreter 

and an OWL codifier [18]. 

 

 
Fig. 2: Ontology learning method. 

 

4.1. Preprocessing Phase 

In the preprocessing phase, the parser analyzes the CM, 

identifying propositions and their parts (concepts and 

linking-phrases), creates a proposition set (PS) and a con-

cepts set (CS). PS have (Co, linking-phrase, Cd) as basic 

structure, where Co is the origin-concept and Cd is the 

destination-concept in the proposition. The disambiguator 

determines the most rational sense of the concepts, using 

the algorithm reported in [16]. Relevant semantic infor-

mation is retrieval from WordNet, OpenCyc, and the ref-

erence ontologies (preciously selected according to pro-

cedure presented in section 3.2). Several sets are created, 

as follows: 

 

– A Cclass/subclass set with the pair of concept (C, C’), if:  

the synsets of C and C’ are directly related by a 

hyperonymy or hyponymy relation in WordNet or a 

connection between them using these relations can be 

created; or 

a (#$ genls C’ C) predicate is included in OpenCyc, 

or a connection between them using these predicate 

can be created; or 

C is coded as owl:class and in C' code’s the 

rdf:SubClassOf… “C”/ in one of reference ontol-

ogies is specified.  

– A Cclass/instance set with the pair of concept (C, C’), if:  

a (#$ isa C’ C) predicate is present in OpenCyc; or  

the C’ rdf:ID=“C”/ specification in one of the ref-

erence ontologies is included.  

– A Cmero/holo set with the pair of concept (C, C’), if the 

synsets of C and C’ are directly related by a 

meronymy or holonymy relation in WordNet.  

– A Cmero/holo-type set with the pair of triplets (C, C’, re-

lation type), if the synsets of C and C’ are directly re-

lated by some meronymy type or holonymy type rela-

tion in WordNet; in relation type the meronymy or 

holonymy type is registered.   

– A Cprop/object set with the triplets (C, Pr, C’), if Pr is 

specified as owl:ObjectProperty in one of the refer-

ence ontologies, where C and C’ are specified as its 

rdfs:domain and rdfs:range, respectively.   

– A Crestr/prop set with the triplets (C, Pr, C’), if C is 

specified as owl:class, and Pr is specified as its prop-

erty,  with the value C’ as restriction. 

 

4.2. Semantic Mapping Phase  

In the semantic mapping, the semantic interpreter analyz-

es the CM identifying several semantic specifications 

from concepts and the propositions (P) included in PS, 

according to OWL DL descriptions [19], such as: classes 

and relations between them (simple classes), union and 

intersection classes (complex classes), instances, proper-

ties and some restriction, and property characteristics. A 

set of heuristic rules grouped by type of semantic infer-

ring to form a semantic-inference engine are defined. 

These rules use the set of predefined linking-phrases (l-p) 

included in the several categories [17], and the sets gener-

ated in the preprocess phase. A salience value is attribut-

ed to each rule to define their activation order. Some rules 

have been modified, respect to previous version [18], for 

using the recovered information from OpenCyc and the 

reference ontologies. When all propositions of the MC are 

analyzed and all rules are activated the phase is finished. 

Rules are formally defined as follow:   
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Rules to infer simple classes: 

R1 (salience = 8):  

a. If P = (Co, l-p, Cd) PS  l-p  CC then PS = PS – 

{P}, S_CS = S_CS  {(Co, Cd)}. 

b. If P = (Co, l-p, Cd) PS  l-p  CC
-1

 then PS = PS – 

{P}, S_CS = S_CS  {(Cd, Ca)}. 

R2 (salience = 8): If P = (Co, l-p, Cd) PS  l-p  CC  

l-p   IC  (Co, Cd) Cclass/subclass then PS = PS – {P}, 

S_CS = S_CS  {(Co, Cd)}, CC = CC  {l-p}. 

 

Rules to infer complex classes 

R3 (salience = 6): If U = (UC, {Ci  (UC, Ci)  S_CS})  

U Union then Union = Union  {U}.  

R4 (salience = 6): If IC = (IC, {Ci  (Ci, IC) S_CS})  IC 

 Intersectionclasses then Intersectionclasses = 

Intersectionclasses  {IC }.   

R5 (salience = 2): If IC-Pr = (IC, C  ((C, IC) S_CS, (C’, 

IC)  S_CS), Pr  (IC, Pr, V) S_CPVhasValue, V)  IC-Pr  

Intersectionclass-property then Intersectionclass-property = 

Intersectionclass-property  {IC-Pr}. 

 

Rule to infer instances 

R6 (salience = 8):  

a. If P = (Co, l-p, Cd) PS  l-p  IC ∧ (Co, Cd) ∉ 

Cclass/subclass then PS = PS – {P}, S_CI = S_CI  {(Co, 

Cd)}. 

b. If P = (Co, l-p, Cd) PS  l-p ∉ IC ∧ [(Co, Cd)  

Cclass/instance]then PS = PS – {P}, S_CI = S_CI  {(Co, 

Cd)}.  

 

Rules to infer properties 

R7 (salience = 8): If P = (Co, l-p, Cd)  PS  (l-p  PC  

(Co, Cd,)  Cmero/holo) ∨ (P ∈ Cprop/object) then PS = PS – 

{P}, S_CP = S_CP  {(Co, l-p, Cd)}, PC = PC  {l-p}. 

R8 (salience = 8):  

a. If P = (Co, l-p, Cd) PS  l-p  PVC then PS = PS – 

{P}, S_CPV = S_CPV  {(Co, l-p, Cd)}; 

b. If P = (Co, l-p, Cd) PS  (Co, Cd, type) Cmero/holo-type 

then PS = PS – {P}, S_CPV = S_CPV  {(Co, prop-

erty1, Cd)}, PVC = PVC  {l-p}. 

c. If P = (Co, l-p, Cd)∈ PS ∧ (P ∈ Crestr/prop) then PS = 

PS – {P}, S_CPV = S_CPV ∪ {(Co, l-p, Cd)}. 

 

 

Rule to infer properties restrictions 

R9 (salience = 6): If (C, Pr, I)  S_CPV  (C’, I) S_CI 

then S_CPVhasValue = S_CPVhasValue {(C, Pr, I)}. 

 

Rules to infer properties characteristics 

R10 (salience = 2): If (C, Pr, V)∈ S_CPVhasValue ∧ (∀C ∀ 

(C, l-p, C’)∈PS-KB[(f-e = Pr ∨ Synonym(l-p,Pr))→(C’=V ∨ 

Synonym(C’,V))]) then Prfunctional=Prfunctional ∪ {Pr}. 

                                                           
1 The l-p corresponding to a WordNet’s relation in PVC category (e.g. 

“made of” in case of has_mero_madeof). 

R11 (salience = 2): If (C, Pr, V) ∈ S_CPV ∧ (∀V ∀ (V, l-p, 

C’)∈PS-KB[(f-e = Pr ∨ Synonym (l-p, Pr)) → (C’ = C ∨ 

Synonym (C’, C)]) then Prsymetric = Prsymetric ∪ {Pr} 

 

4.3. OWL Codification Phase 

  In this final phase, the OWL codifier uses the sets gener-

ated by the semantic interpreter and writes out the corre-

sponding OWL constructs according to W3C Recom-

mendation [19], considering the mapping conventions 

shown in Table 1.  

 

Table 1. Conventions for mapping between inferred sets 

and OWL constructs 

 
Inferred sets Basic struc-

ture 
OWL constructs 

S_CS (C, C’) C is coded as owl:class. C’ as 

owl:class, and the specification  
rdf:subClassOf C is included. 

S_CI (C, I) C is coded as owl:class and I as an 

instance of C. 
S_CP (C, l-p, Pr) An owl:ObjectProperty is coded, 

whose name is formed by the concat-

enation of the label l-p, and the label 
Pr. C is coded as owl:class and 

rdfs:domain of the Object Property. 

Pr is coded as owl:class and 
rdfs:range of the Object Property.  

S_CPV (C, Pr, C’) C is coded as owl:class. Pr is coded as 

owl:onProperty (of C). C’ is coded as 
owl:someValueFrom (of Pr) re-

striction in the specification of C. 

S_CPVhasValue (C, Pr, I) C is coded as owl:class. Pr is coded as 
owl:onProperty (of C) with 

owl:hasValue restriction of C’. C’ is 

coded as owl:class and owl:hasValue 
(of Pr). 

Prsymmetric Pr1 … Prn owl:SymmetricProperty construct in 

the specification of each Pri property 
is included. 

Prfunctional Pr1 … Prn owl:FunctionalProperty construct in 

the code of each Pri is incorporated. 
Intersectioncla

sses 

(C,{C’1… 

C’n}) 

C and each C’i are coded as owl:class. 

The collection of C’i is codes as 

owl:intersectionOf. 
Intersectioncla

ss-property 

(C, C’, Pr) C is coded as owl:class. C’ is coded as 

owl:class. Pr is coded as 
owl:onProperty (of C), with re-

striction owl:hasValue of C’. The col-

lection of C’ and Pr is coded as 
owl:intersectionOf. 

Union (C,{C’1… 

C’n}) 

C is coded as owl:class. The C’i are 

coded as owl:class. Collection of C’i 
as owl:unionOf. 

 

A partial OWL ontology is obtained at the end of this 

phase, which formalizes the semantic information inferred 

from concept and propositions represented in the CM. Re-

sulting ontology can be refined and completed through 

Protégé [14]. 

5. Experimental results 

The described method has been applied to 54 CMs on 

environmental knowledge domain (extending the experi-
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mental CMs repository reported in [18]) in an experi-

mental process. CMs were taken mainly from published 

scientific articles, because there isn’t a reference collec-

tion of CMs for this testing type and the quality of the 

conceptualizations was required. The CMs selection of 

environmental knowledge domain allows making compar-

isons with previous versions, and identifying improve-

ments.  

CMs considered in the experimental repository had an 

average of 23 concepts and 26 propositions. Independent 

conceptualizations are represented in each CM and a par-

tial OWL ontology was automatically obtained from each 

one. However, in [17] a method which allows automati-

cally processing and integrating conceptualizations from 

different approaches was reported. 

Metrics of precision, recall and coverage have been de-

fined to quantify the results of this type of proposed 

method [18]. However, the coverage of the semantic 

inference in the CM for ontology learning was greater 

interest for evaluating the new proposal presented. Cov-

erage means how much knowledge; through the number 

of codified propositions in OWL language was formal-

ized. It is mathematically formalized as follows:  

 

                         CP

ICPCCP
Coverage




                            

(2) 

 

where CCP is the number of correctly coded propositions, 

ICP is the number of incorrectly coded propositions, and 

CP is  the number of propositions should be encoded. A 

proposition is considered as coded if the semantics asso-

ciated with the elements that compose it (concepts and the 

relationship between them) were formally described in the 

resulting OWL ontology.  

Three fundamental aspects were tested in this process:  

1. The effects of OpenCyc in the semantic inference 

for coverage increasing. 

2. The effects of the domain ontologies in the seman-

tic inference for coverage increasing. 

3. The coverage improvement of the proposed meth-

od (combined OpenCyc and domain ontologies 

with WordNet), in comparison with previous ver-

sion reported [19].    

 

The second aspect was evaluated with an ontology cor-

pus resulting from the SWEET (Semantic Web for Earth 

and Environmental Terminology) Project [15], which 

contains about 100 OWL ontologies on environmental 

domain; this is one of the most recognized in this domain.  

The coverage measurement results obtained in ontolo-

gies construction from CMs are graphically presented as 

follow. Figure 3 shows results of method’s coverage us-

ing only OpenCyc (related with the first aspect), and Fig-

ure 4 shows results of coverage using only SWEET on-

tology corpus (related with the second aspect). Results 

were compared with the obtained by previous version re-

ported in [4], using the same CMs. 

 

 
Fig. 3: Comparative results of coverage using OpenCyc. 
 

 
Fig. 4: Comparative results of coverage using SWEET Ontology 

Corpus. 

 

According the first experiment, 12 % of all inferred 

semantics in the CMs and coded in the resulting ontolo-

gies were inferred using OpenCyc, demonstrating their 

contribution in this process. In general, the resulting cov-

erage of the proposed method using only OpenCyc was of 

40 %, increasing the obtained by the version reported in 

[18] in 3%.  

In second experiment, the resulting coverage using the 

SWEET ontology corpus was of 45 %, 8% higher than the 

method reported in [18]. In this case, 19 % of all inferred 

semantics in the CMs were inferred using domain ontolo-

gies included in the selected corpus. Although results can 

be considered positive, the significance of the reference 

ontologies (selected in preprocessing phase) used in the 

semantic inference process (in the CM) is an important 

aspect that can influence in these results. Significance was 

considered hire as the quantity of semantic information 

that can contribute the reference ontologies to the infer-

ence process, according their thematic relationship with 

the processed CM. This aspect has been analyzed through 

the definition of relevance level (RL) metric, which eval-

uates the similarity measures between CM and the con-

ceptualization (represented in CM form) of corresponding 

reference ontologies. It is mathematically formalized as 

follows: 

 

                        n

OCMpS

RL

n

i

i
 0

),(

                                 

(2) 
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where S(CMp, Oi) is the similarity value between CM to 

be processed (CMp) and the conceptualization of refer-

ence ontology i (Oi) represented in CM form, and n is the 

number of reference ontologies selected of the corpus. 

Figure 5 shows coverage trend respect the relevance level 

of the reference ontologies used in each processed CM 

(seen like a red line). 

 

 
Fig. 5: Coverage trend respect the relevance of reference ontol-

ogies.  

   

An important conclusion of this partial experiment is 

that while more thematic relationship exists between the 

knowledge represented in the CM to be processed and the 

conceptualization of the domain ontology to use as 

knowledge source better results in ontology learning form 

the CM can be obtained. It is due because these ontolo-

gies can provide more semantics information for implicit 

semantic discovering in the CM. Experimental results did 

not report contradictions between inferred semantic from 

external knowledge bases and the rest of the included cri-

teria in the method. The proposed procedure for reference 

ontologies selecting from the corpus, based on relation 

measurement between represented knowledge (conceptu-

alization) with the knowledge in CM also helps to reduce 

ambiguities and contradictions in the semantic inference 

process.  

Finally, to compare the whole proposed method with 

the one reported in [18] and for responding third aspects 

tested, another experiment was carried out, which 

OpenCyc and domain ontologies were included. Figure 6 

shows the experiment results. The coverage results were 

higher in 14 % with the extended method than the version 

reported in [18].  The contributions of OpenCyc and do-

main ontologies for ontology learning from CMs evidenc-

ing were demonstrated in these experiments; allowing 

coverage improvement of the semantic inference process 

in the CMs. 

 

 
Fig. 6:  Comparative results of coverage of extended method 

and previous version [18]. 

 

In general, were satisfactory the obtained results; how-

ever, we consider that the coverage needs to be higher. A 

cause possible for not obtaining higher results was that 

the 55% of analyzed propositions had at least one concept 

not included in any knowledge bases used; therefore, 

could not infer semantics from these propositions. To 

solve this limitation, a new rule was added in the semantic 

mapping phase, through which the semantic of all con-

cepts included in not codified propositions and semanti-

cally formalized as class OpenCyc or in any reference on-

tologies was inferred as class too (if it has not been coded 

before in another way). Figure 7 shows comparative re-

sults of this refined of the proposed method, concluding 

that the coverage in the improved proposal was increasing 

in 21 %, which is a promising results. 

 

 
Fig 7:  Comparative results of coverage among the extended 

method, its previous version [18], and the refined new proposal. 

6. Conclusions 

The work presented here is a contribution for the ontol-

ogy learning from an informal knowledge representation, 

such as concept maps, especially useful in context which 

users with little technical background are requiring gener-

ate their own ontologies and collaborate in the construc-

tion of distributed knowledge bases. In this paper, the ex-

tension and improvement of a method for ontology learn-

ing from a concept map have been presented. 

The proposed method combine the analysis of the se-

mantics represented in concept maps, mechanisms of nat-

ural language processing based on a concept-sense-
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disambiguation algorithm, and an extension of the 

knowledge bases, with OpenCyc and domain ontologies 

in a novel way, which significantly distinguishes from the 

existing literature. The use of OpenCyc and domain on-

tologies (used in a combined way with WordNet) has con-

tributed to increase the coverage in the semantics 

inference in the concept map (while keeping its 

flexibility) and the applicability of the method proposed.  

Finally, the mapping between concept maps and OWL 

ontologies creates the bases for the collaborative devel-

opment of ontologies in a more intuitive, friendlier man-

ner for humans and allows the reuse of the knowledge 

represented in concept maps by knowledge management 

systems.  
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