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Abstract  

Case-based reduction is viewed as an important prepro-

cessing step for case based decision-making. In this pa-

per, is introduced a Support Rough Set model to deal with 

mixed and incomplete data. The Support Rough Set mod-

el is used to reduce the case base by using positive and 

limit regions of decision. The proposed algorithms are 

compared with some classical techniques. Experimental 

results show that the proposed methods obtain high accu-

racy, using only a reduced case base. 

Keywords: Case based decision-making, Rough Set The-

ory, data preprocessing 

1. Introduction 

Case Based Reasoning is a problem solving technique 

that reuses past experience to obtain the solution of a new 

problem. One of the scenarios of case-based reasoning is 

when it is needed to take a decision about the label of a 

new, unknown case, also known as supervised classifica-

tion.  

Among case based reasoning for decision-making, the 

Nearest Neighbor (NN) [1] classifier is one of the sim-

plest and popular classifiers. On the other hand, the 

Rough Set Theory has been widely used on decision-

making. Pawlak proposed the Rough Set Theory (RST) in 

80’s [2] and it has had several extensions since then. 

However, despite the numerous extensions proposed, 

there still exist several unexplored angles to RST.  

In this paper is introduced the Support Rough Set mod-

el, as an extension of classical Rough Sets, and it is ap-

plied to case based decision-making. Two novel measures 

of Support Rough Sets are also given in the paper. Four 

algorithms for case base preprocessing are proposed. The 

rest of the paper is as follows: section 2 covers some basic 

concepts about Rough Set Theory and case based deci-

sion-making. Proposed Support Rough Sets, and case 

based preprocessing algorithms based on them are intro-

duced in sections 3 and 4, respectively. Section 5 covers 

some previous preprocessing algorithms and section 6 

presents numerical experiments. Section 7 offers conclu-

sions.  

 

 

 

2. Rough Set Theory and Case based decision-making 

Case based decision-making problems rely on the descrip-

tion of past cases or experiences. In this article, are con-

sidered cases described as a t-uple of attributes.  

Let x be a case belonging to a case base or universe U, 

and described by a set of n attributes A={A1, A2, …, An}. 

Each case has associated a decision label, defining which 

decision was made in the past, in presence of this case. 

Formally, xU, d(x) denotes the label of the case x.  

Each attribute is defined over a domain Di=dom(Ai). 

The domain definition of an attribute will define its set of 

admissible values. Depending of the nature of this set, an 

attribute will be Boolean, Numeric K-valued, among oth-

ers. If the symbol "?" belongs to the set of admissible val-

ues of an attribute, this will denote the presence of miss-

ing values, and it will be used when the value of the at-

tribute on a case is unknown. That is, if ?Di can be lack 

of knowledge of the attribute value on a case. 

 

2.1. Basics of Rough Set Theory 

Rough Set Theory is based on the assumption that every 

case x from a universe U has associated a certain amount 

of information (data and knowledge) expressed by means 

of an attribute set A that describes the cases [3]. The basic 

information structure in RST is the Information System. 

An Information System is a pair (U,A). If every case in U 

has associated a decision label, the pair (U,{A{d}}), 

where dA is known as a Decision System.  

The decision attribute d induces a partition of the uni-

verse of cases. Let be l the amount of admissible values of 

a decision attribute d, the set K={K1, K2,…,Kl} denotes all 

the possible classes of the universe U; and the sets 

K1,…,Kl form a collection of equivalence classes, called 

decision classes, where two objects belong to a same class 

if they have the same value in the decision attribute. 

An attribute AiA discerns or distinguishes a case x 

from another y, and it is written Discern(Ai,x,y), if and 

only if  x(i)y(i), where x(i) denotes the value of attribute 

i in case x. Each subset of attributes B de A, B⊆A, has as-

sociated a binary indiscernibility relation R, including the 

set of pairs of cases undistinguished from another accord-

ing to this relation [3]. 

 

R={(x,y)UU: x(i)=y(i), AiB} (1) 
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An indiscernibility relation defined by considering sub-

sets of U having equal values for a subset of attributes B 

from A, B⊆A, is an equivalence relation. Lower and up-

per approximations are the core concepts of the Rough 

Set Theory. A classical definition of lower and upper ap-

proximation was first introduced considering an indis-

cernibility relation that is an equivalence relation.  

Let be D=(U,A{d}) a decision system, and B⊆A and 

X⊆U, B defines an equivalence relation, and the subset X 

is a concept of the universe U. X can be approximated us-

ing only the information contained in B by constructing 

the B-lower and B-upper approximations, denoted by B*X 

and B
*
X respectively, and defined by the expressions (2) 

and (3),  respectively. 
 

B*X = {xU:[x]B⊆X} (2) 

  

B
*
X = {xU:[x]B∩X} (3) 

 

where [x]B  denotes the class of x according to the in-

discernible relation in B. The cases in B*X are with cer-

tainty members of X, while the objects in B
*
X are possible 

members of X. Based on lower and upper approximations, 

the RST offers the Classification Quality measure, de-

fined by the expression (4).  

Let be a partition sets K={K1,…, Kl} of U, according to 

the decision attribute  (decision labels), where the sub-

sets Ki, are called decision classes. 
 

B(K) = i=1…l(|B*Ki|/|U|)  (4) 
 

The coefficient B(K) is the percent of cases that can be 

correctly classified in the classes K1,…,Kl using only the 

attributes in B, where l is the amount of decision classes.  

 

2.2. Extensions to Rough Set Theory 

Previous definitions of Rough Sets are based on an equiv-

alence relation R that defines as indistinguishable the cas-

es having equal attribute values for an attribute subset B. 

That is, the cases (x,y) are indistinguishable according to 

B if x(i)y(i), for every attribute i in  B, where x(i) de-

notes the value of the attribute i in case x. Defined this 

way, R is an equivalence relation. 

When the attribute B contains attributes with numeric 

domain, an inseparability relation is not applicable. The 

equivalence relation is too tight in case of continuous do-

mains, which small differences in attribute values may not 

be significant to analyze its separation. This is very im-

portant in the case of numeric attributes, in which small 

measurement errors may generate these differences in the 

attribute values.  

There are mainly four alternatives to follow when deal-

ing with mixed and incomplete data. First, to analyze sep-

arately numeric and categorical attributes, and then merg-

ing the decision; second, to discretize numerical attrib-

utes; third, codify categorical attributes, and fourth, ex-

tend the algorithms and deal with mixed and incomplete 

descriptions of objects.  

In the case of the Rough Set Theory, the most used al-

ternatives are the second (discretize numerical attributes) 

and the fourth (extend the theory) [4]. In the first case, the 

original decision system is transformed into another in 

which classic theory can be applied, and in the last one, 

the classical approach to Rough Set Theory is extended 

by accepting that discernible, but very similar cases, can 

be grouped together in the same equivalence class [5]. In 

this case, it is needed to use other indiscernibility rela-

tions among cases of the universe U. Thus, it is needed to 

replace the equivalence relation by a weaker relation, ob-

taining an extension of classical approach to Rough Set 

Theory. Some of the reported extensions are studied on 

[3]. 

An example of the RST extension is to modify the con-

cept of indiscernible cases, such that very similar, but not 

identical cases are grouped together according to a simi-

larity relation R. Similarity relations do not induce parti-

tions of the universe of cases U, but generate similarity 

classes for every case xU. The similarity class of x, ac-

cording to a similarity relation R, is denoted by R(x) and 

defined as R(x)={yU: yRx}  

While equivalence relations induce partitions of the 

universe, similarity relations induce coverings of the uni-

verse. A covering of the universe U, is a family of non-

empty subsets which union is equal to the universe. Sev-

eral researchers [4] have studied RST in approximation 

spaces forming coverings, several focused on constructing 

a generalization of RST based on coverings. In this case, 

the problem is to find an adequate similarity relation for a 

given decision system.  

To solve this problem, Filiberto et al. [4] propose a 

method based on defining a similarity relation as 

xRyF(x,y),  where x, yU and F(x,y) is a similarity 

function and  is a threshold. In [6] is also proposed to use 

a threshold for constructing a similarity relation, and deal-

ing with mixed and incomplete data.  

However, the problem of finding an adequate threshold 

for a given decision system is not easily to solve, due to 

the differences among cases and decision classes. Usual-

ly, decision classes have different degrees of dispersions, 

being in the same decision system compact and disperse 

decision classes. Defining a unique threshold for every 

case does not take into account this reality, being a limita-

tion of previous extensions to RST. In the next section is 

proposed a novel extension, which solves this disad-

vantage.   

3. Support Rough Sets  

Several extensions to the Rough Set Theory are based on 

defining a similarity relation that allows obtaining a cov-

ering of the universe of cases. The extension proposed in 

this article is based on two key aspects of the universe of 

cases: the case based reasoning principle and granularity 

of information.  

Case based reasoning exploits the relation between two 

kinds of similarities, one defined over space of attribute 
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descriptions of cases (attribute similarity) and the other 

defined over the solution space (decision similarity) [7]. 

Having a correct description of cases, and an adequate 

definition of the similarity function, a similar case should 

belong to the same decision class.  

Granular Computing includes theories, methodologies, 

tools, and techniques that use granules (subsets of the 

universe) to solve problems [8]. The main concept within 

Granular Computing is the granule, defined as a core, en-

tity, or focal point of knowledge, composite by different 

cases mutually indistinguishable.  

A granulation of the universe consists on decomposing 

the universe into a family of subsets (granules) that con-

tains all cases of the universe. The granulation depends on 

a relation R, defining which cases are together in a gran-

ule. In [9] is studied the relation between the conditional 

granulation (based on attribute values of cases), and deci-

sion granulation (based on the decision attribute values).  

In this paper, it is considered the decision granulation 

as the pertinence of cases to decision classes, and the rela-

tions R1 and R2 given the condition granulation.  

Let D=(U,A{d}) be a decision system, where U de-

notes the universe of objects, and  A denotes the set of 

conditional attributes, and let be the similarity relations 

R1, R2, R3, among cases, defined as follows. For every 

pair of cases (x,y) in UU.  

 

xR1ysimA(x,y) > x (5) 

  

xR2ysimA(x,y) = x (6) 

  

xR1yd(x) = d(y) (7) 

 

where simA is a similarity function to compute the simi-

larity degree among pairs of cases of universe U, consid-

ering the attributes in A;  x is a similarity threshold for 

the case x. In relation R3, d(.) represents the decision class 

of cases. 

Definition 1. Let be A the attribute set of a decision 

system D, and let be BA. the universe of cases with re-

spect to B is denoted as UB and is defined as the set of 

cases described only by the attributes in B.   

Definition 2. Let be A the set of attributes of a decision 

system D; the set of indexes associated to the set A is de-

noted by IA and is defined as IA={iℕ:1i|A|}.  

Notation 1. If jIA, j is named the j-th  index of A, and 

is denoted as IA(j), that is, IA(j)=j, j IA.  

 Definition 3. Let be A the attribute set of a decision 

system D, and let be BA. the set of indexes associated to 

the set B is denoted as IB and is defined as IB={i 

IA:AIA(i)B}.   

Lemma 1: Let be A the attribute set of a decision sys-

tem D, let be BA, and let be IA and IB the sets of indexes 

associated to the sets A and B, respectively; it is fulfilled 

that IB IA.   

Proof: 

Case 1. IB. Let be and index kIB, by definition 3 of 

IB, k{i IA:AIA(i)B}, that is, k IA, so it is concluded 

that IB IA. 

Case 2. IB=. Let’s suppose that IB ⊈IA. This means 

that ∃k IB such that k∉IB, but this is impossible, because 

IB=. So, it is concluded that the thesis is true, IB IA.■ 

Definition 4. Let be A the set of attribtues of a decision 

system D; let be IA the set of indexes associated with the 

set A, and let be iIA. Each attribute Ai, defined over a 

domain Di=dom(Ai), has associated a comparison criteri-

on, Ci. The attribute comparison criterion is defined as a 

function Ci: DiDi[0,1], where 0 denotes minimum 

similarity among values of Ai and 1 denotes maximum 

similarity.   

Lemma 2: Let be A the attribute set of a decision sys-

tem D, let be BA. Let be two cases x,yUB, and let be 

an index kIB, then 0 Ck(x(k),y(k)).    

Proof. By hypothesis and definition 4, x(k)Dk, and 

y(k)Dk . By lemma 1, IB IA , and as kIB, also kIA. 

As the domain of Ck is DkDk is possible to apply, by def-

inition 4, Ck to the k-th components of cases x and y, de-

noted as x(k) and y(k), respectively. By definition 4, Ck is 

defined over the interval [0,1], taking Ck(x(k),y(k))  real 

values between 0 and 1, including the extremes, so, can-

not be lower than 0 or higher than 1, which is expressed 

by the following inequality: 0 Ck(x(k),y(k)).■ 

Definition 5. Let be A the attribute set of a decision 

system D, let be BA, and let be IB the set of indexes as-

sociated to the set B and let be iIB. A similarity function 

among cases x,yU, is defined as a function 

simB:UU[0, |B|], such that (x,y)jIBCj(x(j),y(j)).  

Definition 6. The similarity threshold for each case 

(x) is defined as the similarity value of case x with re-

spect to the most similar case belonging to a different de-

cision class (most similar enemy).  

Using relations R1, R2 and R3, are defined the sets SA, 

WSA and N for every case x of the universe U, according 

to the expressions (8), (9) an (10), where Support (SA(x)), 

Weak Support (WSA(x)), and Neighbors (N(x)) are the 

sets of cases similar to x, according to the relations R1, R2 

and R3, respectively.  

 

SA(x) ={yU:xR1y}  (8) 

  

WSA(x) ={yU:xR2y} (9) 

  

N(x) ={yU:xR3y} (10) 

 

Thus, cases belonging to the set SA(x), are the support 

of x, due to they are more similar to x than the most simi-

lar cases of different decision classes. Using nearest 

neighbor as case based reasoning procedure; every of the-

se cases guaranteed the correct classification of case x. On 

the other hand, cases belonging to the set WSA(x) consti-

tute the weak support of x, because they have the same 

similarity value that the most similar enemy of x.  
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In the following, some properties of Support Rough 

Sets are established.  

Lemma 3. Let be A the attribute set of a decision sys-

tem D, let be BA, and let be IA and IB the sets of indexes 

associated to the sets A and B, respectively; let be two 

cases x,yUB, and let’s consider an index kIA, such that 

k∉IB. Let’s construct the attribute set B’=(BAk)A, 

with its set of indexes IB’=IB{k}. the cases x’ and y’ are 

formed by the addition of the attribute Ak to the cases x 

and y, such that x’,y’UB’. The similarity value among 

cases x,yUB is equal or lower than the similarity value 

among cases x’,y’UB’, simB’(x’,y’) simB(x,y).  

Proof. simB’(x’,y’)= jIB’Cj(x(j),y(j)) by definition 5. 

As IB’=IB{k}, this can be rewritten as simB’(x’,y’)= 

jIB{k}Cj(x(j),y(j)). This can also be rewritten as 

simB’(x’,y’) = jIBCj(x(j),y(j)) + Ck(x(k),y(k)).  

Substituting  jIBCj(x(j),y(j)) by simB(x,y), is obtained 

simB’(x’,y’) = simB(x,y) + Ck(x(k),y(k)). By lemma 2, 0 

Cj(x(j),y(j)), so the inequality simB(x,y)  simB(x,y) + 

Ck(x(k),y(k)). By transitivity,  simB’(x’,y’)  simB(x,y).■ 

Theorem 1. Let be A the attribute set of a decision sys-

tem D, let be BA, and let be IA and IB the sets of indexes 

associated to the sets A and B, respectively; let be two 

cases x,yU, and let’s consider an index kIA, such that 

k∉IB. Let’s construct the attribute set B’=(BAk)A, 

with its set of indexes IB’=IB{k}. the cases x’ and y’ are 

formed by the addition of the attribute Ak to the cases x 

and y, such that x’,y’UB’. After defined the similarity  

thresholds x in a decision system of a Support Rough 

Set, all cases belonging to the set SB(x) are maintained in 

SB(x) with the incorporation of condition attributes, that 

is, ySB(x) y’SB’(x’). 

 Proof. Let be ySB(x). By the expressions (8) and (5), 

simB(x,y) > x. simB’(x’,y’) simB(x,y), by lemma 3. By 

transitivity, simB’(x’,y’) > x. According to the expres-

sions (8) and (5), it means that y’SB’(x’), being SB’(x’) 

the support set of x’UB’. Considering the expressions 

ySB(x) and y’SB’(x’), it is possible to establish that for 

an arbitrarily case in the support set of x, according to the 

attributes in B, ySB(x), the case  y’SB’(x’), which cor-

responds to the case y in the universe respect to B’, UB’ 

belongs to the support set of x’ in the universe UB. Thus, 

ySB(x) y’SB’(x’).■ 

Theorem 2. Let be A the attribute set of a decision sys-

tem D, let be BA, and let be IA and IB the sets of indexes 

associated to the sets A and B, respectively; let be two 

cases x,yU, and let’s consider an index kIA, such that 

k∉IB. Let’s construct the attribute set B’=(BAk)A, 

with its set of indexes IB’=IB{k}. the cases x’ and y’ are 

formed by the addition of the attribute Ak to the cases x 

and y, such that x’,y’UB’. After defined the thresholds 

x in a decision system, adding new condition attributes 

cause elements belonging to the set WSB(x) upgrade to 

the set SB’(x’), or continue in WSB’(x’), that is, 

yWSB(x)(yWSB’(x’))  (ySB’(x’)). 

Proof. Let be yWSB(x). By the expressions (9) and 

(6), simB(x,y) = x. simB’(x’,y’) simB(x,y), by lemma 3. 

This can be rewritten as (simB’(x’,y’)> simB(x,y))  

(simB’(x’,y’)= simB(x,y)). By transitivity is obtained that 

(simB’(x’,y’)>x)  (simB’(x’,y’)=x). According to the 

expressions (5) and (8), the first term of the proposition 

means that y’SB’(x’), being SB’(x’) the support set of 

x’UB’; and according to the expressions (9) and (6), the 

second term means that y’WSB’(x’), being WSB’(x’) the 

weak support set of x’UB’. Considering the above ex-

pressions, it is possible to establish that for an arbitrarily 

case in the weak support set of x, according to the attrib-

utes in B, yWSB(x), the case  y’UB’, which corre-

sponds to the case y in the universe respect to B’, UB’ be-

longs to the support set of x’ or belongs to the weak sup-

port set of x’ in the universe UB. Thus, 

yWSB(x)(yWSB’(x’))  (ySB’(x’)). ■ 

 After established the sets SA(x), WSA(x) and N(x), the 

problem consists on defining lower and upper approxima-

tions of decision classes. To solve this problem, there are 

introduced granularity levels for the approximations.  

Level 1 (Minimum Granularity) considers that in the 

lower approximation of a decision class are included cas-

es belonging to this class and having cases in their Sup-

port or cases in their Weak Support. Formally, expres-

sions (11) and (12) define the lower and upper approxi-

mations of the decision, according to Level 1 of granulari-

ty.   

 

INF(Ki)={xKi:(SA(x)) 

               (∃yKi:yWSA(x))}  
(11) 

  

SUP(Ki)={{xKi} 

                {y Ki :yWSA(x)}} 
(12) 

 

Cases belonging to lower approximation have at least a 

neighbor case of its same decision class, with the same or 

higher similarity value than its most similar enemy. In 

upper approximation are included all cases belonging to 

the current decision class Ki, and cases of other decision 

classes that are included in the Weak Support (WSA) of 

cases belonging to Ki, that is, cases of other classes hav-

ing the same similarity value than the established thresh-

old.  

Another way to define lower and upper approximation 

is according to level 2, Maximum Granularity. Level 2 

considers in the lower approximation only cases having 

non empty Support, and not included in the Weak Support 

of cases of different decision classes. Upper approxima-

tion is considered as same as in level 1. Expressions (13) 

and (14) detail the definitions of lower and upper approx-

imations according to level 2.  

 

INF(Ki)={xKi:(SA(x)) 

             (yKi:xWSA(y))} 
(13) 

  

SUP(Ki)={{xKi} (14) 
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                yKi:yWSA(x)}} 

 

The concepts associated to granularity levels 1 and 2, 

are shown graphically taking as example the decision sys-

tem of figure 1. Figure 1a and 1b show the lower approx-

imation using granularity levels 1 and 2, respectively. 

Note how cases with only Weak Support are analyzed to 

be included according to granularity level 1, and how cas-

es with no Support, or belonging to Weak Support of cas-

es from different decision classes are excluded from low-

er approximation, according to level 2.  

As mentioned earlier, one of the most useful measures 

of the Rough Set Theory is Classification Quality. It 

measures the goodness of the classification using the 

Rough Set approximation.  

 

 
 

Fig. 1: Decision system formed by two decision classes: circles, 

and stars. The arrows indicate the direction of the connection of 

each case with its most similar case. 

 

 
 

Fig. 1a: Cases belonging to lower approximations according to 

Level 1 of granularity are filled in gray. 

 

 
 

Fig. 1b: Cases belonging to lower approximations according to 

Level 2 of granularity are filled in gray. 

 

In the paper are also introduced novel measures that 

can be useful to determine the goodness of certain ap-

proximation of a decision system. Decision Support (15) 

takes into consideration the relation between the support-

ed cases with respect to the total amount of cases in a de-

cision system.  

 
DSA(D) = OWAKiK(OWAxKi(x)) (15) 

 

where (x)=1 if SA(x), and (x)=o elsewhere.  

Moreover, Decision Support Ratio (16) takes into con-

sideration the degree in which cases are supported, with 

respect to the total amount of cases. Both measures can be 

used to obtain knowledge about the characteristics of de-

cision classes.  

Decision Support and Decision Support Ratio are de-

fined using OWA operators [10], which allows using sev-

eral combinations of them according to the needs present 

in decision systems.  

 
DSRA(D) = 

OWAKiK(OWAxKi(|SA(x)|/|N(x)|)) 

 
(16) 

In this context, determining which cases are relevant 

and which cases are not, is very important. In this sense, 

the proposed Support Rough Sets offers some interesting 

elements. Typical cases usually have high amount of cas-

es in their Support, and less representative cases usually 

have not. In a similar way, cases belonging to decision 

boundaries often lack of Support, and merely have cases 

in their Weak Support.  

In addition, both measures can be used to establish the 

dispersion of decision classes, by analyzing the supports 

of the cases belonging to them. Moreover, in imbalanced 

classes, it is possible to determine the relations of the mi-

nority class with respect other decision classes.  

4. Using Support Rough Sets for case based prepro-

cessing 

In this section, four algorithms for case base prepro-

cessing are introduced, based on Support Rough Sets. 

Two of them are editing methods, ESRS1 and ESRS2 

(Editing based on Support Rough Sets, level 1 and 2, re-

spectively), and the other are condensing methods, 

CSRS1 and CSRS2 (Condensing based on Support Rough 

Sets, level 1 and 2, respectively). Figure 2 – 3 show the 

proposed algorithms.  

The ESRS1 algorithm will include in the edited case 

base cases having non-empty Support, and cases having at 

least one case of its same decision class in its Weak Sup-

port. This guarantees each case has at least one case of its 

decision class with same or higher similarity than its most 

similar enemy. 
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Editing based on Support Rough Sets, granularity level 1, 

ESRS1 

Inputs: Case base T, Attribute set B, similarity function . 

Output: Edited set E 

1. E =  

2. Compute thresholds x for each xT  

3. for each decision class Ki: 

3.1. for each case xKi 

Compute sets SA(x) and WSA(x) according to 

similarity relations R1 and R2 

3.2. Compute the lower approximation of decision 

class Ki at level 1, as INF(Ki) 

4. E = E INF(Ki) 

5. Return E 
 

Fig. 2: Editing algorithm based on Support Rough Sets, granu-

larity level 1. 

 

ESRS2 algorithm is more demanding, because it uses 

level 2 of granularity, and only includes in the edited set 

cases having non-empty Support, and not included in the 

Weak Support of cases of different decision classes. 

On the other hand, if it is wanted to preserve decision 

boundaries it is needed to use other strategies. The con-

densing algorithms CSRS1 and CSRS2 are based on limit 

region of decision, and therefore they preserve decision 

boundaries.  

In the Rough Set Theory, the limit region of a decision 

class is defined as the intersection of upper and lower ap-

proximations of the decision class, and the limit region of 

a decision system is defined as the union of limits regions 

of each decision classes. Formally, for a decision class Ki, 

its limit region is defined as LIM(Ki) = SUP(Ki)-INF(Ki). 

In addition, the limit region of a decision system is given 

as LIM(D) = KiKLIM(Ki).  

However, the limit region of a class contains only 

boundary cases, so, to obtain a good representation of the 

decision class, the algorithms select representative cases. 

To structure a class in subclasses, Compact sets have been 

very useful [11]. Compact sets are the connected compo-

nents of a Maximum Similarity Graph (MSG).  

A Maximum Similarity Graph is a directed graph that 

connects each case with its most similar neighbors. For-

mally, let be G=(X,) a MSG for a set of cases X, with 

arcs . In this graph, two cases x,yX form an arc 

(x,y) if  maxtX{(x,y)}, where (x,y) is a similarity 

function. For a more formal definition of Compact set, 

please refer to [12].  

Compact sets do not assume any properties of data, and 

do not need any parameter for their construction, except 

of the similarity function to compare two objects. They 

also handle mixed and incomplete data. As mention, the 

decision class is structured using Compact sets.  

Then, for each Compact set, the algorithm selects as 

representative case the case more similar to every case in 

the compact set. Formally, the representative case is se-

lected as in expression (17).  

 

r = argmaxxKi{yKi(x,y)}  (17) 

 

Same as CSRS1, CSRS2 obtains a condensed set, but 

using the limit region of the decision according to granu-

larity level 2.  

 

Condensing based on Support Rough Sets, granularity 

level 1, CSRS1 

Inputs: Case base T, Attribute set B, similarity function . 

Output: Condensed set C 

1. C =  

2. Compute thresholds x for each xT  

3. for each decision class Ki: 

Compute limit region of the class, according to 

level 1, as LIM(Ki) = SUP(Ki)-INF(Ki) 

C = C  LIM(Ki) 

Obtain compact sets CS(Ki) 

for each compact set in CS(Ki), compute the 

representative case r using equation (17) and 

add it to C.     

4. Return C 

 
Fig. 3: Condensing algorithm based on Support Rough Sets, 

granularity level 1. 

 

CSRS2 includes in the condensed set the cases having 

no Support, and those included in the Weak Support of 

cases of different decision classes. CSRS_2, same as 

CSRS_1, guarantees the representation in the condensed 

set of the classes and the inclusion of boundary cases.  

5. Previous works on case base preprocessing for de-

cision-making 

Case based decision-making incorporates strategies for 

storage and retrieval of information of the case base to 

determine the decision to make in presence of new, un-

seen cases.  

 The case base is the core of case based decision-

making, and its quality is crucial for the entire reasoning 

process. Rough Set Theory has been successfully used for 

case base preprocessing, by selecting relevant features 

[13, 14], relevant cases [15-17], and more recently, for 

selecting features and cases [18].   

The methods for case based preprocessing are divided 

in editing methods and condensing methods [19]. Editing 

methods aim at smoothing decision boundaries among 

classes, by removing noisy or mislabeled cases. The first 

method for this end is the ENN, proposed by Wilson in 

1972 [20]. Despite its age, the ENN method is considered 

as one of the best preprocessing methods, because it is 

simple and has very good experimental results.   

Another technique used for editing case bases are the 

proximity graphs, particularly the Relative Neighborhood 

Graph. The Relative Neighborhood Editing (RNE), by 

Toussaint, is based on such graphs [21].  Recently, Gar-

cia-Borroto et al. proposed the MSEditB method for case 

based preprocessing. We will refer the MSEditB method 
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as MSB in experimental comparisons. The method is 

based on removing cases connected with cases from dif-

ferent decision classes in a Maximum Similarity Graph 

[22].  

On the other hand, condensing methods aim at select-

ing representative cases only, and preserving decision 

boundaries. The first condensing method was CNN, pro-

posed by Hart in 1968 [23]. CNN has serve as inspiration 

for numerous proposals, and has many extensions and 

variants, such as GCNN [24]. Among other condensing 

algorithms, it is possible to mention GBR1, based on 

Gray Relational Graphs, introduced in 2006 by Huang 

[25]. Another recently proposed algorithm for data con-

densing, also based on Maximum Similarity Graphs, is 

the CSESupport method, introduced in 2009 by Garcia-

Borroto et al. [26].  We will refer the CSESupport method 

as CSES in experimental comparisons. This method aims 

at obtaining a consistent set with minimum cardinality.  

6. Experimental Results 

This section compares the performance of proposed edit-

ing and condensing algorithms for case base prepro-

cessing, over 20 case bases from the Machine Learning 

repository of the University of California at Irvine [27]. 

Table 1 shows the description of them, including attribute 

count (Att.), case count (Cases), class count (Classes) and 

the error of the NN classifier (NN) without pre-

processing.  

 
Table 1.Description of case bases. 

Case bases Att. Cases Classes NN 

autos 26 205 6 0.29 

breast-c 9 289 2 0.35 

breast-w 9 699 2 0.05 

colic 22 368 2 0.20 

credit-a 15 690 2 0.18 

cylinder 40 512 2 0.23 

dermat. 34 366 6 0.06 

diabetes 8 768 2 0.29 

ecoli 7 336 8 0.20 

hayes 5 160 4 0.31 

heart-c 13 303 5 0.23 

heart-h 13 294 5 0.24 

iris 4 150 3 0.05 

labor 14 57 2 0.14 

thyroid 5 215 3 0.03 

tic-tac 9 958 2 0.22 

vehicle 18 946 4 0.31 

vowel 12 990 11 0.01 

wine 13 178 3 0.04 

zoo 17 101 7 0.03 

 

As similarity function, there was used 

sim(x,y)=i=1…mCi(x(i),y(i)). The attribute comparison 

criterion Ci compares attribute values, depending if they 

are numeric, nominal or incomplete. For incomplete at-

tributes Ci(x(i),y(i))=0, for numeric attributes, 

Ci(x(i),y(i)) = (|x(i)-y(i)|)/(maxi-mini), and for nominal 

attributes, Ci(x(i),y(i))=1 if x(i)=y(i), and 0 otherwise.  

To determine the performance of proposed algorithms, 

it was compared the ESRS1 and ESRS2 algorithms with 

respect to editing methods MSB [22], and RNE [21]. It 

was also compared the performance of CSRS1 and 

CSRS2 with respect to condensing methods CSES [28] 

and GBR1[25]. 

It was used 10-fold cross validation over every case 

base. Then, each algorithm was applied and the results 

were averaged. It was used the Nearest Neighbor (NN) 

rule as case based decision-making method. As quality 

measures, there were computed the average by class error 

of classification, and the case retention rate, for each algo-

rithm.  

Tables 2 – 7 show the results comparing the perfor-

mance of proposed methods with respect to others. As 

shown in table 2, the method with low classifier errors is 

RNE; followed by the proposed ESRS2 and by other edit-

ing algorithms. In addition, ESRS1 algorithm is also 

comparable according to classifier error with other editing 

methods. 

Table 3 shows that the proposed ESRS2 method ob-

tains the best results according to case retention in 13 of 

20 databases.  

To determine if significant differences exist in the per-

formance of the algorithms, it was used the Wilcoxon’s 

test, with a 95% of significance. The null hypothesis was 

that the compared algorithms had the same performance. 

Table 4 shows the results of the Wilcoxon’s test, com-

paring the performance of ESRS1 and ESRS2 with re-

spect other algorithms, according to classifier error and 

case retention. Each cell contains the probability given by 

the test.  

 
Table 2. Error of editing algorithms.                              

Case bases RNE MSB ESRS1 ESRS2 

autos 0.15 0.40 0.42 0.38 

breast-c 0.35 0.40 0.43 0.39 

breast-w 0.41 0.04 0.04 0.03 

colic 0.04 0.21 0.23 0.23 

credit-a 0.22 0.15 0.15 0.14 

cylinder 0.14 0.32 0.33 0.30 

dermat. 0.30 0.06 0.06 0.06 

diabetes 0.06 0.30 0.30 0.29 

ecoli 0.30 0.21 0.23 0.22 

hayes 0.21 0.34 0.40 0.26 

heart-c 0.46 0.19 0.19 0.18 

heart-h 0.19 0.22 0.22 0.21 

iris 0.21 0.03 0.03 0.03 

labor 0.04 0.09 0.19 0.09 

thyroid 0.10 0.08 0.08 0.09 

tic-tac 0.10 0.24 0.24 0.18 

vehicle 0.26 0.32 0.32 0.32 

vowel 0.31 0.03 0.03 0.03 

wine 0.02 0.04 0.04 0.02 

Zoo 0.04 0.08 0.06 0.07 

Times 

Best 
11 5 4 8 
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The test concludes that ESRS2 is better than the MSB 

method and equal to RNE, according to classifier accura-

cy. In addition, it keeps fewer cases than both algorithms. 

On the other hand, ESRS1 ties with RNE in both classifi-

er error and cases retention, but it loses with respect to 

MSB. These results suggest that granularity level 2 is a 

very good tool for editing databases, obtaining good clas-

sifier accuracy with fewer cases.  

Tables 5 and 6, show the results of condensing algo-

rithms, according to the classifier error and case retention, 

respectively.  

 
Table 3. Retention of editing algorithms. 

Case bases RNE MSB ESRS1 ESRS2 

autos 0.87 0.71 0.75 0.65 

breast-c 0.82 0.70 0.82 0.32 

breast-w 0.63 0.94 0.95 0.93 

colic 0.56 0.76 0.80 0.58 

credit-a 0.82 0.80 0.81 0.76 

cylinder 0.86 0.75 0.77 0.66 

dermat. 0.82 0.93 0.94 0.93 

diabetes 0.97 0.68 0.71 0.63 

ecoli 0.78 0.79 0.80 0.76 

hayes 0.87 0.62 0.89 0.47 

heart-c 0.27 0.74 0.76 0.70 

heart-h 0.85 0.76 0.78 0.73 

iris 0.85 0.94 0.96 0.93 

labor 0.96 0.83 0.86 0.77 

thyroid 0.91 0.96 0.97 0.94 

tic-tac 0.98 0.99 1.00 0.16 

vehicle 0.05 0.67 0.70 0.62 

vowel 0.79 0.99 0.99 0.98 

wine 0.98 0.93 0.95 0.90 

zoo 0.96 0.96 0.97 0.87 

Times  

Best 
7 0 0 13 

 
Table 4.Wilcoxon’s test on editing algorithms. In bold signif-

icant results favoring proposed methods and in italics results 

rejecting proposed methods. 

 

Error Retention 

RNE MSB RNE MSB 

ESRS1 vs 0.79 0.04 0.68 0.00 

ESRS2 vs 0.80 0.03 0.04 0.00 

 

Condensing algorithms usually obtain reduced training 

sets by increasing the classifier error. As shown in table 5, 

the proposed CSRS1 and CSRS2 have slightly higher 

classifier errors than unprocessed case base, with accura-

cy drops lower than 15%. With respect to CSES algo-

rithm, the proposed methods have lower error rates in av-

erage. 

 
Table 5.Error of condensing algorithms. 

Case bases GBR1 CSES CSRS1 CSRS2 

autos 0.29 0.29 0.27 0.27 

breast-c 0.50 0.44 0.52 0.47 

breast-w 0.10 0.10 0.11 0.09 

colic 0.23 0.23 0.35 0.26 

credit-a 0.21 0.26 0.22 0.21 

cylinder 0.27 0.29 0.28 0.27 

dermat. 0.08 0.12 0.11 0.12 

diabetes 0.35 0.38 0.37 0.36 

ecoli 0.26 0.36 0.34 0.33 

hayes 0.40 0.35 0.32 0.40 

heart-c 0.21 0.26 0.24 0.24 

heart-h 0.16 0.33 0.29 0.29 

iris 0.05 0.12 0.05 0.05 

labor 0.12 0.10 0.07 0.13 

thyroid 0.06 0.12 0.07 0.07 

tic-tac 0.24 0.26 0.37 0.26 

vehicle 0.31 0.33 0.31 0.33 

vowel 0.01 0.04 0.04 0.03 

wine 0.07 0.08 0.07 0.07 

zoo 0.08 0.05 0.07 0.03 

Times 

Best 
13 1 5 7 

 

Table 6 shows the results of case retention rates of the 

condensing algorithms. As shown, proposed methods 

have higher retention rates than CSES. However, they are 

able to preserve decision boundaries, in the reduced set of 

cases.   

Again, Wilcoxon’s test was used to determine if there 

significant differences exist in the performance of the al-

gorithms (Table 7). The test does not found significant 

differences between proposed methods and GBR1 and 

CSES methods, according to the classifier error.  
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Table 6.Retention of condensing algorithms. 

Case bases GBR1 CSES CSRS1 CSRS2 

autos 0.90 0.43 0.57 0.66 

breast-c 1.00 0.63 0.21 0.71 

breast-w 0.19 0.10 0.13 0.15 

colic 0.19 0.29 0.26 0.48 

credit-a 0.57 0.30 0.45 0.50 

cylinder 0.66 0.37 0.52 0.63 

dermat. 0.88 0.13 0.26 0.27 

diabetes 0.72 0.41 0.52 0.60 

ecoli 0.44 0.29 0.44 0.48 

hayes 0.47 0.62 0.32 0.74 

heart-c 0.43 0.34 0.49 0.54 

heart-h 0.04 0.30 0.46 0.51 

iris 0.03 0.12 0.31 0.34 

labor 0.34 0.16 0.34 0.43 

thyroid 0.74 0.09 0.32 0.35 

tic-tac 0.93 0.84 0.01 0.84 

vehicle 0.62 0.42 0.57 0.65 

vowel 0.92 0.20 0.32 0.33 

wine 0.97 0.11 0.27 0.32 

zoo 0.65 0.12 0.17 0.28 

Times  

Best 
3 14 3 0 

 
Table 7. Wilcoxon’s test on condensing algorithms. In bold sig-

nificant results favoring proposed methods and in italics results 

rejecting proposed methods. 

 

Error Retention 

GBR1 CSES GBR1 CSES 

CSRS1 vs 0.05 0.23 0.01 0.08 

CSRS2 vs 0.11 0.16 0.31 0.00 

 

According to instance retention, CSRS1 method out-

performs both GBR1 and CSES, while CSRS2 method 

ties with GBR1 and loses with respect to CSES. The ex-

periments show that on condensing algorithms, keeping 

only limit cases preserves decision boundaries, and gives 

a good representation of the decision class. 

Using Support Rough Sets with granularity level 1 in 

condensing methods are obtained slightly better results 

than using granularity level 2, but the Wilcoxon’s test 

does not found significant differences with respect to oth-

er methods. It is important to mention that the proposed 

editing methods obtain good classifier accuracy, with 

average retention of about 65%-85% of cases.  

In addition, condensing algorithms are comparable 

according to the classifier accuracy with previously 

reported method, but using fewer amount of cases, 

obtaining an average retention of about 35%-55% of 

cases. The above results show using Support Rough Sets 

for case based preprocessing enhances the case base, and 

improves decision-making procedures.  

7. Conclusions 

Reducing redundant or irrelevant cases can improve deci-

sion-making performance in most cases and decrease cost 

of storage and retrieval of cases. Classical Rough Set 

Theory has been widely applied for case selection and da-

ta preprocessing. However, this approach only deals with 

nominal data. In this work, there are introduced Support 

Rough Sets as an extension of classical Rough Sets. 

This extension allows dealing with mixed and incom-

plete data. Support Rough Sets are also used in four algo-

rithms for case base preprocessing. In addition, both 

Similarity Support and Similarity Support Ratio measures 

can be used to characterize decision systems, as well as to 

select relevant cases and attributes.  

The experimental results show that the proposed algo-

rithms can be used to deal with both categorical and nu-

merical attributes directly, without discretization and they 

are able to find small and effective subsets of cases. 
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