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Abstract

In this article, we present an explicit linearization of dynamical systems of Ruijsenaars-
Schneider (RS) type and of the perturbations introduced by F Calogero [2] of these
systems with all orbits periodic of the same period. The existence of this linearization
and its algebraic nature relies on the dynamical equation firstly discussed in the artic-
le [3]. The notion of algebraic linearization which was first displayed in NEEDS 99
conference will be discussed further with several other examples in a forthcoming
publication. A differential system is algebraically (resp. analytically) linearizable if
there are n globally defined functions (rational, resp. meromorphic) which are gene-
rically independent so that the time evolution of the flow expressed in these functions
is linear (in time) and algebraic in the initial coordinates.

1 Algebraic linearization of hyperbolic
Ruijsenaars–Schneider systems

The dynamical systems of Ruijsenaars–Schneider (RS) type characterized by the equations
of motion

z̈j =
n∑

k=1, k �=j

żj żkf(zj−zk), j = 1, . . . , n (1.1)

are “integrable” or “solvable” [2], if

1) f(z) = 2/z, (1.2a)

2) f(z) = 2
[
z

(
1 + r2z2

)]
, (1.2b)

3) f(z) = 2a cotgh (az), (1.2c)

4) f(z) = 2a/sinh (az), (1.2d)

5) f(z) = 2a cotgh (az)/
[
1 + r2 sinh2(az)

]
, (1.2e)

6) f(z) = −aP ′(az)/[P(az)−P(ab)]. (1.2f)
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In this first paragraph, we focus on the Hyperbolic and rational case given by (1.2e).
The starting point of the analysis is the observation [1] that (1.1) with (1.2e) is equivalent
to the following “Lax-type” (n × n)-matrix equation:

L̇ = [L, M ]−, (1.3)

with

Ljk = δjkżj+(1−δjk)(żj żk)1/2α(zj−zk), (1.4)

Mjk = δjk

n∑
m=1, m�=j

żmβ(zj−zm)+(1−δjk)(żj żk)1/2γ(zj−zk), (1.5)

and

α(z) = sinh(aµ)/ sinh[a(z+µ)], (1.6a)

β(z) = −a cotgh(aµ)/
[
1 + r2 sinh2(az)

]
, (1.6b)

γ(z) = −a cotgh(az)α(z), (1.6c)

where

sinh(aµ) = i/r. (1.7)

It was furthermore noted [2, 4, 5, 6] that the diagonal matrix

X(t) = diag{exp[2azj(t)]}, (1.8)

undergoes the following time evolution:

Ẋ = [X, M ]−+a[X, L]+. (1.9)

Let Fk and Gk be the functions defined as:

Fk = tr
(
Lk

)
, Gk = tr

(
XLk

)
. (1.10)

The functions Fk are first integrals of the dynamical system defined by (3.1). Cayley–
Hamilton relate these constant of motion with the coefficients A0, . . . , An−1 of the char-
acteristic polynomial of the matrix L,

Ln = An−1L
n−1+An−2L

n−2+ · · ·+A0I. (1.11)

The equations (1.3) and (1.9) lead to:

Ġk = 2a tr
(
XLk+1

)
= 2aGk+1. (1.12)

Thus,the vector G = (G0, . . . , Gn−1) displays the time evolution:

Ġ = AG, (1.13)

where the matrix A is with coefficients first integrals of the differential system:

Aij = 2aδi+1,j +2aAj−1δi,n. (1.14)
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2 Algebraic linearization of the Calogero extension
of the Ruijsenaars–Schneider systems

F Calogero introduced the following perturbation of the trigonometric and rational Ruij-
senaars–Schneider systems characterized by the equations of motion:

z̈j+iΩżj =
n∑

k=1, k �=j

żj żkf(zj−zk), j = 1, . . . , n. (2.1)

F Calogero made the remarkable conjecture [2], now proved in the trigonometric and
rational cases, that all the orbits of the dynamical system defined by (2.1) are periodic of
period Ω. The equations under consideration here are modified due to the presence of the
perturbation. The Lax equation (2.3) gets modified into (cf. [3]):

L̇ = [L, M ]−+iΩL, (2.2)

and the time evolution of the matrix X is not modified. This yields new time evolution
for the functions Fk and Gk:

Ḟk = iΩkFk, (2.3a)

Ġk = 2a tr
(
XLk+1

)
+iΩk tr

(
XLk

)
= 2aGk+1+iΩkGk. (2.3b)

3 Some general facts on the relationships
between algebraic linearization, superintegrability
and isochronicity

Recall that a differential system defined on a manifold of dimension n is said to be super-
integrable if it displays n − 1 first integrals. It is said to be isochronous if all its orbits,
or solutions, periodic of same period. The interrelations between these notions and the
notion of algebraic linearization require further developments. We like to mention here
some observations in the prolongation of the examples that we discussed above. Firstly
the algebraic linearization does not yield the superintegrability in general. Nevertheless
the following (obvious!) fact should be noted: given an algebraic linearisable system, if
the linear system obtained from the initial system in the linearizing coordinates is superin-
tegrable, then the initial system is itself superintegrable. We have in mind the case where
the linear system obtained is an harmonic oscillator. The system is then superintegrable
if and only if all the ratios of frequencies of the harmonic oscillator are rational.

Let X be a vector field which displays n − 1 generically independent integrals F =
(F1, . . . , Fn−1). Choose Ω = dx1∧ . . .∧dxn a volume form on the manifold. There is a
1-form ξ such that:

ξ∧dF1∧ . . .∧dFn−1 = Ω. (3.1)

Assume that each Fi satisfies the de Rham division property (this is generic). This yields
a function h so that:

ιXΩ = hdF1∧ . . .∧dFn−1. (3.2)
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Assume now that the vector field X is volume preserving (Hamiltonian systems are volume
preserving for instance). Then in generic cases this yields h = H(F1, . . . , Fn−1) and the
period of the vector field X along the orbits F−1(c) is given as the integral:

∫
F−1(c)

[ξ/h]. (3.3)

Thus the vector field X is isochronous if and only if this integral is constant independent
of c.
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