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Abstract - In this paper, a bioinspired neural model for 

detecting object motion based on retina computational machanism is 

proposed based on synthesizing representative works on modeling 

retina and incorporating some latest findings on retina mechanisms. 

To understand more in-depth the retina machanism of motion 

detection, the spatio-temporal properties of each type of neurons in 

the retina motion pathway are then mathematically analyzed. And 

then a set of experiments and quantitative analysis of the 

experimental results are accomplished for assessing the model 

performance on motion detection. Experimental results show the 

effectiveness of this proposed model on detecting object motion. 

Index Terms - retina neural mechanism, retina neural network, 

object motion detection, computational model. 

I .  Introduction 

The ability to detect motion in the visual scene is a 

fundamental computation in the visual system that is firstly 

performed in the retina[1]. As for complete models of retina 

motion extracting channel, Boahen etc. proposed[2~3] a 

retinomorphic system, which uses four different kinds of 

neurons for firing specific spikes in response to concrete 

stimuli and representing the input data. F. Barranco[4]
 

designed and implemented an event-driven processing scheme 

based on artificial retinas for the detection of spatiotemporal 

features. Stephen A. Baccus[5] etc. investigated the circuit 

basis for detecting object motion by recording intracellularly 

from all classes of retinal interneurons while simultaneously 

recording the spiking output of many ganglion cells.  

These findings and works sketch the structural scheme of 

motion processing channel in retina. However, mathematical 

analysis of the models and their applications to motion 

processing are insufficient without exception. Fortunately, 

numerous neurophysiological findings[1-3][6] on retina 

information processing pathways have been revealed. These 

new findings provide great source of ideas for our modeling 

the retina more reasonably.  

        So mechanism as well as models of computing object 

motion in retina incorporating these latest findings will be 

dealt with. 

This paper is organized as following. Model for 

processing object motion based on retina mechanism is firstly 

proposed in section 2. In section 3, experimental results and 

corresponding analysis is implemented. Finally, conclusions 

on the proposed algorithm are drawn out in section 4. 

II.  A Model for Processing Object Motion Based on 

Retina Neural Mechanism 

In this section, a neural organization structure for 

processing object motion based on retina mechanism will be 

described at first. Then the spatio-temporal properties of each 

type of neurons in the motion pathway will be proposed and 

analyzed in succession. 

 

Fig.1 The wiring diagram of the cells which constitute retina motion pathway 

A. A Model for Processing Object Motion Based on Retina 

Neural Mechanism 

Experimental data [7] and theoretical analysis [8-9] show 

that directional selectivity is the result of local, postsynaptic, 

nonlinear interactions in the DS(directionally selective) cell. 

The light responses of cones and bipolar cells are not 

directionally selective[10]. The direction-selective circuit in 

the retina relies highly upon the selective wiring of synaptic 

contacts between SAC(starburst amacrine cell) distal dendritic 

tips and the dendrites of the DS GCs(ganglion cells). As a 

presynaptic interneuron, the SAC is asymmetrically connected 

to DS cells and delivers direct inhibition to DSGCs. The SACs 
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pointing in the null direction deliver inhibition and those 

pointing in the preferred direction do not. They project 

inhibition laterally ahead of a stimulus moving in the null 

direction [11]. In addition, starburst inhibition is itself 

directionally selective: it is stronger for movement in the null 

direction [11]. Excitation in response to movement in null 

direction is reduced by an inhibitory signal acting at a site that 

is presynaptic to the DS cell. Thereby excitation is reduced by 

enhanced inhibition given stimulus of motion in the null 

direction, and thus the effect of directional selectivity is 

realized. Therefore, signaling between the cones, bipolar cell, 

SAC, and DSGC constitutes a neural network that generates 

the DS light responses of the DSGC[12]. The retina motion 

pathway, in a form of laminar organization, is shown as Fig.1. 

B.  Spatio-Temporal Properties of Cone Cells 

Photoreceptor cells sample optical signals and convert the 

light information into biological signals. Some studies[11] 

have shown that the conversion is nonlinear processing and the 

input-output dynamic characteristics of photoreceptor cells can 

be described as mathematical formulas [7]: 

     tyxtyxtyx kIO pppp
,,,,,,                           (1) 

Where  tyxOp ,,  represents the output of the light-sensitive 

cell  yx, at time point t ,  tyxI p ,, for the brightness 

distribution,  tyxk p ,, denotes the pigment concentration, and 

between  tyxI p ,, and  tyxk p ,,  there exists a relationship as 

equation: 

        1,,,,1,,  tyxktyxItyxk
dt

d
ppppp              (2) 

Where the parameter p  represents the time constant for 

updating the pigment, and 
p denotes the pigment bleaching 

constant. 

C. Spatio-Temporal Properties of Horizontal Cells 

Horizontal cells accept the input of the photoreceptor 

cells[8] , acting as a low-pass filter in the transmission of 

information from responses of receptors[11].  

When suitable parameters are given, the receptive field of 

a horizontal cell can be modeled [13] as:  
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Where hw represent the amplitudes of the Gaussian weight 

components, whose standard deviations is 
h , in  00 ,;, yxyxWh

. 

And  00 , yx represent a neighbor area of cell  yx, . 

Signals converge into horizontal cell  is: 
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Where  00 , yxOp
represents the output signals from a 

photoreceptor located at  00 , yx in the  of cell  yx, . 

The response dynamics of a horizontal cell  yx,  to its 

stimulus is described as following equation [7]: 
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Where  tyxOh ,,  is the output of a horizontal cell  yx, , and 

 tyxIh ,,  the input of the cell; parameter  is the extended 

length of excitement field, h time constant of the horizontal 

cell, and the feedback factor. 

C. Spatio-Temporal Properties of Bipolar Cells(BCs) 

Bipolar cells are the only ones with receptive field 

properties that match the requirements for the essential part of 

motion computation of nonlinear spatial summation over small 

subunits in the ganglion cell receptive field center.  

Center-surround antagonistic receptive field (CSARF) 

organization is the basic synaptic circuit for spatial 

information processing in the visual system. BCs are the first 

neurons along the visual pathway that exhibit CSARF 

organization. In both the receptive field center and the 

antagonistic surround region, the bipolar cell’s temporal filter 

followed a biphasic time course. The surround response was 

delayed and inverted in sign relative to the center. 

Motion in the object region drives these bipolar cells, and 

their outputs are rectified before summation by the ganglion 

cell [14-15].  

And the weight distribution in bipolar receptive field can 

be denoted as: 

          (6) 

where  and  represent the amplitudes of two Gaussian 

weight components, whose standard deviations are   and 

 respectively, in . 

Signal converge into bipolar cell  is: 

      (7) 

where  and  represent the center and surround region 

of center-surround antagonistic receptive field,  and 

 represent respectively the output signals from PCs 

and HCs located at  in CSARF. 

The response dynamics of retina BCs to stimulus is 

described as following equation[29]: 

            (8) 
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where  and  represent the membrane 

potential of a bipolar cell  and its input signal 

respectively, and  is a time constant. 

D. Spatio-Temporal Properties of Starburst Amacrine Cells 

Amacrine cells are served to integrate, modulate and 

interpose a temporal domain to the visual message presented 

to the ganglion cell. Experiments [5][15] show that SAC are 

wired to suppress the visual response of DSGCs through 

presynaptic inhibition of a bipolar terminal. 

The weight distribution in receptive field of SACs is 

described as: 

 
       

2
2

2
0

2
0

2
1

2
0

2
0

2

2

2

100 ,;, aa

yyxxyyxx

SAC eAeAyxyxW








            (9) 

Where
1A and

2A are respectively the amplitude of two 

components, and 
1a  and 

2a are standard deviation of 

Gaussian shape components. 

Inputs convergence into a SAC can be represented in 

following equation: 
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Where centre  and suur  respectively represent the centre  

and surround  region in receptive field of SACs. 

    The dynamic property of SACs is represented as [16]: 
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Where  te and  ti  respectively represent the excitatory and 

inhibitory inputs. 
SACO  represents the membrane potential of 

SAC locates at  yx, , while 
kO  is the membrane potential of 

the neuronal element which makes lateral connections with 

SAC element  yx, . A , B and D are constants for 

respectively represent the rate of potential decay, the 

saturation levels for the excitatory and inhabitory inputs, 

SACW is the lateral connections to the neuron of interest, i.e. 

SAC  yx, . 

E. Spatio-Temporal Properties of Directionally Selective 

Ganglion Cells 

DSGCs signal the direction of image motion across their 

receptive fields by firing action potentials in a ‘preferred’ 

direction, other than in the opposite ‘null’ direction. A key 

circuit module of retinal DSGCs is a spatially asymmetric 

inhibitory input from starburst amacrine cells [17-19].  

The preferred direction of the cells and the strength of the 

directional tuning of the DSGCs can be calculated from 

responses to stimuli in each of stimulus directions evenly 

spanning 360°. With directional tuning data, the response R of 

a DSGC to stimulus from the direction   can be described by 

a von Mises distribution [20] as: 
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Where 
maxR is the maximum response,  becomes the 

preferred direction in degrees, and   is the concentration 

parameter, which accounts for the width of the directional 

tuning. 

The weight distribution of excitory component and 

inhibitory component in DSGCs receptive field can be 

represented respectively  as: 
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Where
g , 1g  and 2g  represent the standard deviation of 

two DSGCs receptive field weight distributions respectively. 

exeR  and inhR  represent a symmetric and an asymmetric 

region in receptive field of DSGC  yx,  respectively.  

Inputs convergence to a DSGC  yx,  is: 
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Where 
bO  and 

SACO  represent the output from bipolar cells in 

exeR and amacrine cells in 
inhR . 

TABLE I Parameters of the Proposed Retina Neural Network 

Cell Type 
Width of 

RF (pixels) 

Standard 

deviation of 

Gaussians 

Other parameters 

Photoreceptor cells Null Null 5.0p
 

Horizontal cell 27 5.4h  03.0 , 1hw  

Bipolar cell 5 6.01 b
, 4.52 b

 121  bb ww  

Starburst amacrine 

cells 
15 6.01 a

, 4.52 a  ;5.0;2;1  DBA ,

2.111 21  AA ；  

Ganglion cell 21 
 

1020 max  R；  
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TABLE II Mean Square Error (MSE) of Motion Velocity Matrices Detected by Using Different Methods 

Motion 

direction 

Frames 

1 2 3 4 5 6 7 8 9 10 11 12 13 

0° 

Retina 

model 
0.0525 0.0525 0.0525 0.0520 0.0501 0.0501 0.0501 0.0501 0.0501 0.0501 0.0501 0.0501 

0.050

1 

Optical 

flow 
0.0532 0.0532 0.0532 0.0532 0.0532 0.0532 0.0532 0.0532 0.0532 0.0532 0.0532 0.0532 

0.072

2 

45° 

Retina 

model 
0.0742 0.0742 0.0742 0.0730 0.0723 0.0723 0.0723 0.0724 0.0724 0.0724 0.0724 0.0724 

0.072

4 

Optical 

flow 
0.0750 0.0750 0.0750 0.0750 0.0750 0.0750 0.0750 0.0750 0.0750 0.0750 0.0750 0.0750 

0.102

4 

90° 

Retina 

model 
0.0525 0.0525 0.0525 0.0520 0.0519 0.0519 0.0519 0.0519 0.0519 0.0519 0.0519 0.0519 

0.051

9 

Optical 

flow 
0.0577 0.0577 0.0577 0.0577 0.0577 0.0577 0.0577 0.0577 0.0577 0.0577 0.0577 0.0577 

0.073

2 

135° 

Retina 

model 
0.0742 0.0742 0.0742 0.0731 0.0731 0.0731 0.0731 0.0731 0.0731 0.0731 0.0731 0.0731 

0.073

1 

Optical 

flow 
0.0750 0.0750 0.0750 0.0750 0.0750 0.0750 0.0750 0.0750 0.0750 0.0750 0.0750 0.0750 

0.102

4 

180° 

Retina 

model 
0.0525 0.0525 0.0525 0.0520 0.0501 0.0501 0.0501 0.0501 0.0501 0.0501 0.0501 0.0501 

0.050

1 

Optical 

flow 
0.0532 0.0532 0.0532 0.0532 0.0532 0.0532 0.0532 0.0532 0.0532 0.0532 0.0532 0.0532 

0.072

2 

 

 

III.   Experimental Results and Corresponding Analysis 

To evaluate the effect of the proposed retina model on 

motion detection, quantitative analysis and comparasion with 

other method (here it is optical flow based algorithm) are both 

accomplished. For achieving this, the criterion on performance 

evaluation of motion detection algorithms will be firstly given 

in this section. Obviously, for a method of object motion 

detection, accuracy, universality and timeliness are the three 

most important factors that should be used to construct a 

formula for measuring system performance on motion 

detection. The following expression is one of this kind of 

representations:  
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Where ve


 denotes the mean square error (MSE) of detected 

motion velocity on real one, Hand V are respectively the pixels 

on horizontal and vertical direction, accordingly hE and vE are 

respectively error matrices for representing the horizontal and 

vertical component of velocity vector field, and they read: 
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Where  hR


 and vR


 are respectively the matrices for 

representing the horizontal and vertical component of velocity 

vector field that that have been detected by using certain 

motion detection algorithm , while hR and vR are matrices for 

real motion velocity components. Table II shows the mean 

square error (MSE) of motion velocity matrices detected by 

using different methods (the proposed retina model vs. Optical 

Flow). 

As can be seen from the above table, the two methods 

show similar motion sensitivities as well as good accuracy on 

the direction of 0°, 90°,  180°and 315°. And generally, the 

proposed retina model shows better performance on motion 

detection than the traditional optical flow based algorithms. Or 

it has a lower value of MSE than that with traditional optical 

flow based algorithms. 

IV.   Conclusions 

In this paper, a bioinspired neural model for detecting 

object motion based on retina computational machanism is 

proposed based on synthesizing those representative works on 

modeling retina and incorporating some latest findings on 

retina mechanisms. To understand more in-depth the retina 

machanism of motion detection, the spatio-temporal properties 

of each type of neurons in the retina motion pathway is also 

mathematically analyzed. For evaluating the model 

performance on motion detection, a set of experiments and 

quantitative analysis of the experimental results are 

accomplished. The experimental results show that this 

proposed model can be used to detect object motion 

effectively. 
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