
Applying a MAX-MIN Ant System with a Dynamic

Roulette Wheel Strategy to Software Release Planning

Yu-Qing Huang
1
, Chuan-Wen Chiang

2
, Cheng-Hsu Huang

3

1
Department of Computer Science & Information Engineering, National Central University, Taoyuan County 32001, Taiwan

2
Department of Computer and Communication Engineering, National Kaohsiung First University of Science

and Technology, Nanzih, Kaohsiung 811, Taiwan, R.O.C.
3
Department of Computer Science and Information Engineering, Hwa Hsia Institute of Technology, Taiwan

u9115903@ccms.nkfust.edu.tw

Abstract - In this study, the software releasing planning (SRP)

problem resulted from incremental software development is

considered. Software releasing planning has been proven to be a NP-

complete problem. Owing to the intractable nature of the problem, a

heuristic approach based on ant colony optimization (ACO) can be

applied to obtain satisfactory suboptimal solutions within a

reasonable amount of computational cost. However, most realistic

ACO-based approaches for software releasing planning still remain

to be improved. A novel ant-inspired search algorithm is therefore

proposed. The proposed algorithm, namely MMASDRW-SRP, adopts a

dynamic roulette wheel strategy for giving a sophisticated balance

between intensification and diversification, thereby improving the

quality of solutions obtained. The performance of MMASDRW-SRP is

demonstrated by comparing it against conventional ACO-based

approaches. Experimental results indicate that the proposed

MMASDRW-SRP algorithm performs significantly better than the

competitive approaches.

Index Terms - software release planning (SRP), ant colony

optimization (ACO), MAX-MIN Ant System (MMAS).

1. Introduction

Software project management aims to plan and monitor

software projects using management knowledge and skills

while working within the constraints of time, resources and

budgets imposed by project environment and stakeholders [1].

The incremental software development model is one of the

popular product development models in recent years. Release

planning addresses the assignment of features to a sequence of

consecutive releases such that the related resources and

budgets constraints are satisfied [2]. Since the software release

planning has been proven to be a NP-complete problem [3].

There are many studies have focused on various

metahheuristic algorithms to acquire near-optimal solutions

within a reasonable amount of computation time. For example,

the famous Ant System (AS) proposed by Marco Dorigo is

inspired from the foraging behavior of real ants in the early

1990s [4]. In the AS, the experiences from previous attempts

in solution searching guide artificial ants to construct feasible

solutions and proceeds in a cooperative manner. Many

researchers have proposed new approaches based on the

preceding description of design principles which are known as

Ant Colony Optimization (ACO), such as the ant colony

system (ACS) [5] and the MAX-MIN Ant System (MMAS)

[6].

In general, every metaheuristic algorithm must address

two major capabilities for a search space:

exploration and exploitation [7-8]. Exploration is a

process of discovering potential solutions by directing the

search space to entirely new regions to search for better

solutions. To retain visited promising solutions, exploitation is

a process of utilizing such visited information in obtaining

areas to determine which regions of the search space should be

explored next. The exploitation capability often suffers from a

loss of diversity in feasible solutions, thus increasing the risk

of becoming trapped in local optima. The advantage of the

exploration is that it has higher opportunity of hopping from

one local optimum to another; concurrently, however, it greatly

increases the risk of the metaheuristic algorithm being unable

to converge. For example, ant colony optimization can use the

construction information of past solutions to ensure the

validity of the generated problem solutions. This also leads the

exploitation capability to become higher with the accumulation

of search experiences, increasing the risk of the algorithm falls

into local optimum as the search time increases. We can know

that the control mechanisms for balancing exploration and

exploitation have gradually become an essential factor in

improving the performance of metachuristic algorithms [7-8].

Based on the design principle of balancing exploration and

exploitation, we proposed MMASDRW-SRP approach to

improve the performance by taking proposed dynamic roulette

wheel strategy.

The remainder of this paper is organized as follows. In

the next section we describe the general formulation of the

software release planning. In Section 3 we present the

proposed MMASDRW-SRP algorithm in detail. We also

describe our experimental study and its results in Section 4.

Finally, we conclude this paper in the last section.

2. Problem Formulation

The goal of release planning in incremental software

development is to identify an optimal plan that maximizes the

sum of all (weighted) priorities of all the different

stakeholders. In this study, the symbol F = {f1, f2, …, f|F|}

refers to the set of features in a software project and R = {r1,

r2, …, r|R|} represents the set of releases that will be developed.

The size of F and R are symbolized as |F | and |R|,

representing the number of features and releases, respectively.

International Conference on Advanced Computer Science and Electronics Information (ICACSEI 2013)

© 2013. The authors - Published by Atlantis Press 433

mailto:u9115903@ccms.nkfust.edu.tw

It indicates that the feature fi has been assigned to release rj in

the case of x(i)=rj.

Let P and C be a set of the precedence and the coupling

relationships between features, respectively. (fi, fj)  P

indicates that a precedence relationship exists between fi and fj,

such that fj should not be delivered before fi. Moreover, (fi, fj)

 C indicates that a coupling relationship exists between fi and

fj, such that fi and fj should be delivered simultaneously.

Precedence and coupling relationship constraints are given as

follows:

() (), (,)
i j

x i x j f f P   , (1)

() (), (,)
i j

x i x j f f C   . (2)

Let T = {t1, t2, …, t|T|} be the set of |T| resource types in a

software project. When delivering the feature fj,, the symbol njk

indicates the consumption amount of resource type tk. In

addition, the symbol capik denotes the maximum available

amounts of the resource tk in the release ri. Thus, each release

planning solution x must satisfy the following resource

bounded constraint:

() ,
j

x i r ik jk k j
n cap t T and r R      . (3)

Let set S = {s1, s2, …, s|S|} be the collection of

stakeholders in the software project. Each stakeholder spS is

assigned a relative importance λp{1, 2, …, 9} by the project

manager. The symbol valuepi{1, 2, …, 9} represents the

perceived value of the feature fi for stakeholder sp. The symbol

urgencypij{1, 2, …, 9} indicates the satisfaction with the

situation that the feature fi is assigned to release rj for the

stakeholder sp. Ruhe et al. proposed the following objective

function F(x) for the feasible solution x:

: ()()
j j

r R i x i r ij
F x WAS    , (4)

where WASij refers to the weighted average satisfaction

(WAS) of each stakeholder priorities for all features fi when

assigned to release rj as designated in the function:

p
s Sij j p pi pij

WAS value urgency 
      , (5)

where ξi refers to the importance of the release ri in the

software project development. Table 1 shows a software

project example of software release planning. In this example,

the maximum available amounts of the resource type t1 in the

release r1 is cap11=1,300. The urgency19=(9, 0, 0) represents

the degree of preference of assigning the feature f9 in release 1,

2, and 3 is 9, 0, and 0 by the stakeholder s1, respectively.

The dependency relationships between features in

software projects can generally be characterized by a

dependency graph. However, stakeholders usually only define

direct relationships between features, and do not describe the

derived relationships from current relation conditions. This

increases the risk of the metaheuristic algorithms generating

illegal solutions. To reduce the risk of generating illegal

solutions, this study uses an activity graph G = (V, E) to

describe the direct and derived dependency relationships

between features. In the activity graph, the set V = {a1, a2, …,

a|V|} consists of activities of software project and the set E =

{eij} consists of precedence relationships among activities.

Each activity includes a single feature or several features with

coupling relationships. The set
i

F  refers to the collection of

all features in activity ai. The size of V is symbolized as |V|,

which represents the number of activities. A directed edge eij

in set E indicates that a precedence relationship exists between

activity ai and activity aj. Figure 1 shows the activity graph of

the problem instance described in Table 1.

f1f2

f6f5

f11f3

f9f12f7f8
f15f13f14

a1a2

a3

a5a4

f4f10

a6

a10

a8a7a11
a12

a9

Fig.1. An example activity graph.

Table 1. Relevant information about the example project.

ai fi

Resource type tj Stakeholder s1 Stakeholder s2

Predecessor
t1:ni1 t2:ni2 t3:ni3 t4:ni4 value1i urgency1i Value2i urgency2i

a1 f1 150 120 20 1,000 6 (5,4,0) 2 (0,3,6)
a2

a2 f2 75 10 8 200 7 (5,0,4) 5 (9,0,0)
-

a3 f3 400 100 20 200 9 (9,0,0) 3 (2,7,0)
-

a4 f4 450 100 40 0 5 (2,7,0) 7 (7,2,0)
-

a5 f5 100 500 40 0 3 (7,2,0) 2 (9,0,0)
-

a6 f6 200 400 25 25 9 (7,2,0) 3 (5,4,0)
a5

a7

f7 50 250 20 500 5 (9,0,0) 3 (2,7,0)
-

f8 60 120 19 200 7 (8,1,0) 1 (0,0,9)

a8

f9 280 150 40 1,500 6 (9,0,0) 5 (0,8,1)
a7

f12 100 300 25 50 3 (9,0,0) 7 (0,6,3)

a9 f10 200 300 40 500 2 (5,4,0) 1 (0,0,9)
-

a1

0

f11 250 375 50 150 1 (8,1,0) 5 (0,7,2)
a3

a1

1

f13 100 250 20 50 7 (9,0,0) 9 (9,0,0)
-

 f14 0 100 15 0 8 (9,0,0) 3 (6,3,0)
-

a1

2

f15 200 150 10 0 1 (0,0,9) 5 (3,6,0)
a11

cap1j 1,300 1,450 158 2,200

cap2j 1,046 1,300 65 1,750

3. The Proposed Algorithm

The MMASDRW-SRP approach models the construction

graph as a fully connected graph including |V|  |R| vertices to

generate a feasible solution by artificial ant. Each vertex

represents a pair between activities and releases, and any pair

(ai, rj) indicates assigning all features of activity ai to release

rj. A feasible solution can be formed as a tour with the length

434

|V| in the construction graph. For instance, in the software

project presented in Table 1, the pair list L = < (a1, 1), (a2, 1),

(a3, 1), (a4, 3), (a5, 1), (a6, 2), (a7, 2), (a8, 3), (a9, 3), (a10, 3),

(a11, 1), (a12, 2)> is an example of feasible solutions, while the

pair (a7, 2) indicates that the features f7 and f8 in the activity a7

have been assigned to release 2. MMASDRW-SRP consists of

initialization, construction, and feedback phases. The

following subsections describe the operational processes of the

MMASDRW-SRP approach.

A. Initialization phase of MMASDRW-SRP

The main task of this phase is to determine the initial

values of the parameters employed in executing MMASDRW-

SRP approach. For example, the initial value of the pheromone

is set as 0.1 in this study.

B. Construction phase of MMASDRW-SRP

The construction phase constructs feasible solutions and

then evaluates their quality. In the MMASDRW-SRP approach,

each feasible solution is determined through four steps: (1)

constructing the set of feasible pairs and calculating the

weights of all feasible pairs; (2) constructing the set of

candidate pairs; (3) selecting the target pair; and (4) evaluating

the quality of the feasible solution. These four steps are

detailed as follows.

Step 1. The set VN consists of activities with an

undetermined release. An activity that has not been assigned to

any release is called a ready activity if it does not have any

immediate predecessor activity or the releases of all its

immediate predecessor activities have been assigned.

According to the content of the feasible solution pair list L, the

set of ready activities VR is constructed based on the

satisfactions of the precedence relationships. For each ready

activity ai  VR, according to the current content of the feasible

pair list L, the set of legal release FRi for the ready activity ai

has been constructed based on the satisfactions of the

precedence relationships of activities and the resource bound

constraints. After completing the construction of the legal

release set for each ready activity, the set of feasible pair set F
*

is constructed by the construction rule defined as

 * (,) | and
i j i R j i

F a r a V r FR     . (6)

For each pair (ai, rj)F
*
,

calculate the weight value wij, which

indicates the suitability of ready activity ai being assigned to

release rj. The weight value wij is given by

 
[] []

max |

ij

ij ij

ij j

WAS
w

WAS r R

 



 

 
, (7)

where τij represents the amount of pheromone trail for activity

ai to be assigned to release rj, and two predefined parameters,

α and β, are employed to adjust the relative influence of the

pheromone trail and heuristic function. The two parameters are

set as  = 1 and  = 2. Moreover,
ij

WAS  refers to the

weighted average satisfaction (WAS) when the activity ai is

assigned to the release rj, which can be defined as

[]
u i p

ij j p pu puj
f F s S

WAS value urgency 




 

     . (8)

Step 2. The candidate pair set C
*
 consists of all the

candidate pairs selected from the feasible pair F
*
 using random

selection. This study proposes the dynamic strategy for

constructing the candidate pair set C
*
. The dynamic strategy is

defined as

 * 1 * *

| |
| | min [log (1)] | |, | |

F notimprove
C t F F   , (9)

where tnotimprove refers to the number of unimproved iterations

for the global best solution LGB. After determining the number

of candidate pairs, the candidate pair set is accomplished by

selecting |C
*
| different pairs from feasible pair F

*
 through

random selection.

Step 3. After constructing the candidate pair set, the

artificial ant chooses the target pair (at, rt) from the candidate

pair set using roulette wheel strategy. The symbol pij indicates

the probability for the candidate pair (ai, rj) to be chosen,

which can be defined as

(,) *
k l

ij

ij

kl
a r C

w
p

w





. (10)

The selected target pair (at, rt) is then included in the feasible

solution L, and the target activity at is removed from the sets

VN and VR. Repeat step 1 if VN is not empty; otherwise,

proceed to the next step.

Step 4. Once an artificial ant completes the construction

task of the feasible solution, the quality of the feasible pair list

L can be evaluated. The symbol CL refers to the evaluated

value of the feasible pair list L, which can be defined as

(,)
i j

L ij
a r L

C WAS 



  . (11)

After all artificial ants have completed the construction and

evaluation of feasible solutions, the MMASDRW-SRP algorithm

proceeds to the feedback phase. Otherwise, the artificial ants

repeat the four steps in the construction phase.

3.3 Feedback phase of MMASDRW-SRP

In this phase, pheromone concentration is updated by

(1) , if (,)

(1) , otherwise

ij ij i j GB

ij

ij

a r L   


 

    
 

 

 (12)

where  is the evaporation rate, and ij is defined as

1 1

| |
(| |) (| |) log

GB
ij F L

S F C      , (13)

where |S| and |F| refer to the numbers of stakeholders and

features in the software project and the symbol
GBLC refers to

the quality of the global best solution LGB computed by (11).

According to the limitations of pheromone concentration

derived in the MMAS [6], the maximal and minimal amount of

all possible pheromone trails are defined in the following:

435

1 1

max | |

1
(| |) (| |) log

GBF LS F C


     (14)

max

min
2 | |V


 


 (15)

4. Performance Study

The parameter values of these ACO-based approaches

used for the test runs in all experiments [4, 5, 6, 10]. Due to

the lack of a problem instance library of release planning in

incremental software development, this study uses the problem

instances based on the PSPLIB database of the multi-mode

resource constrained project scheduling problem (MRCPSP).

The benchmark sets for project instances of J10, J12, J14, J16,

J18, and J20 include 536, 547, 551, 550, 552, and 554

problem instances, respectively. Each problem instance was

carried out one solution-finding run. Each run was stopped

after 10,000 feasible solutions had been evaluated.

A. The Derived Srp Problem Instance

For a project in MRCPSP, the set V consists of partially

ordered activities and the set E is the set of precedence

constraints among activities. Firstly, the content of feature set

F, the precedence relationship set P and the set of resource

types T in SRP were set as the content of set V, the content of

set E and the content of renewable resource types set R in

MRCPSP, respectively. The coupling relationship set C was

set as null in the derived problem instance. According to the

setting situation of some parameters in literature [9], the

content of set S, R and the values of the relative importance of

stakeholders and releases were set as S={s1, s2}, R={r1, r2,

r3}={1, 2, 3}, λ1=6, λ2=4, ξ1=0.7, ξ2=0.3, ξ3=0.0, respectively.

The calculation function of valuepi, nit and Capit are defined as

follow.

, andpi ip i pvalue d f F s S   , (16)

1

1

() , and
i

M

it imt i i
m

n r M f F t T



    , (17)

1(1) , if 1 2 and ;

0, if 3.

j

jt i i
f F

it

i

n r r t T

Cap
r





     


 




(18)

For MRCPSP problem instance, the symbol dip indicates

the duration of activity ai in mode p, the symbol rimt indicates

the consumption units of renewable resource t for activity ai in

mode m, and the symbol Mi indicates the number of execution

mode for activity ai. The urgency functions for stakeholder s1

and s2 are defined as follow.

1

(0, ,10), if 1 3;

(,10 ,0), otherwise;

pi pi pi

i
pi pi

value value value
urgency

value value

  
 



 (19)

2

(0, ,10), if 1 3;

(,10 ,0), otherwise.

i i i
i

i i

w w w
urgency

w w

  
 



 (20)

where the definition of the symbol wi is defined as follow

2 1() | | (max{ | }) 10
i i i i i

w L SUCC d a V       , (21)

where the symbol Li indicates the maximal topology path

length of activity ai in MRCPSP problem instance, and the

symbol |SUCCi| represents the number of all immediate

successor of activity ai in MRCPSP problem instance.

Obviously, an activity of MRCPSP problem instance with

more successors and higher length of maximal topology path

means that this activity has higher influence on software

project, and thus for the corresponding feature in derived SRP

problem instance was assigned in early release. The urgency

function for stakeholder s2 defined in equation (20) is designed

based on the characteristic of precedence constraints, and the

urgency function for stakeholder s1 defined in equation (19) is

designed based on the business value of features.

B. Performance Comparison

This subsection presents the experimental results obtained

from the performance comparison of the proposed MMASDRW-

SRP approach with other ACO-based approaches AS-SRP,

ASRank-SRP, ACS-SRP, and MMAS-SRP. In this experiment,

the percentage of optimal solution found was measured for

each solution-finding run on the J10, J12, J14, J16, J18, and

J20 benchmark test instances. Table 2 demonstrates the

experimental results. The experimental results shown in Table

2 indicate that MMASDRW-SRP performs better than the other

ACO-based approaches, especially when trying to solve the

J20 benchmark. This is because the MMASDRW-SRP approach

is capable of balancing the exploration and exploitation

capabilities according to the search situation. For the

traditional ant colony optimization technologies, the

exploitation capability becomes higher with the accumulation

of search experiences. Thus, the risk of the algorithm falling

into local optimum increases over time.

Table 2. Percentage ratio of the number of optimal solutions found by

MMASDRW-SRP and the competitive approaches.

 AS-SRP ASrank-SRP ACS-SRP MMAS-SRP This work

J10 80.04% 84.33% 89.93% 95.52% 100.00%

J12 79.16% 84.28% 87.57% 95.25% 100.00%

J14 75.86% 79.49% 83.48% 94.56% 99.82%

J16 65.82% 68.36% 75.82% 86.73% 98.91%

J18 55.07% 63.95% 68.66% 84.24% 96.01%

J20 50.18% 59.57% 63.00% 80.14% 94.40%

To provide an intuitive explanation of what is happening

during the search of the ACO-based approaches, this study

analyzes the exploitation and exploration capabilities by

tracking the evolution of the distance between ant paths along

the search. The concept of distance is a way to calculate the

difference between ant paths which was proposed in [11]. For

release planning, one method of measuring the distance dist

(L1, L2) between two solutions L1 and L2 is to count the number

436

of pairs that appear in the feasible solution L1, but not in the

feasible solution L2. A higher value of the average distance

among all ants indicates that the algorithm has higher

exploration capability. A smaller value of the average distance

among all ants indicates that the exploitation capability of

algorithm has been promoted.

Fig. 2. Comparison of solution-finding behavior among ant-inspired

search techniques.

Figure 2 shows the value of the average distance among

all ants in each iteration of five ACO-based algorithms for a

problem instance with 20 activities. After iteration 10, the

value of the average distance among all ants ranges between 0

and 2 for traditional ant colony optimization technologies.

This indicates that the search is focusing more on exploitation

after a short search of exploration. The traditional ant colony

optimization technologies do not have enough exploration

capability to help the algorithms jump out the local optimal.

For MMASDRW-SRP approach, the value of the average

distance among ants ranges between 1-3 and 6-8. This means

that the curve of average distance for MMASDRW-SRP

approach exhibits extreme shakiness. When the average

distance ranges between 1 and 3, the MMASDRW-SRP

approach has more exploitation capability, and when the range

of the average distance ranges between 6 and 8, the

exploration capability of the MMASDRW-SRP approach has

been improved. When the algorithm finds difficulties during

the MMASDRW-SRP approach with more exploitation

capability, the exploration capability has been improved to

find the potential new solutions. When the algorithm discover

many local minima during MMASDRW-SRP approach with

more exploration capability, the MMASDRW-SRP approach

facilitates more exploitation to improve current approximate

optimal solutions based on past searching experiences.

According to the experimental results in table 3, the automatic

alternate shifting between exploitation and exploration is an

essential feature of the MMASDRW-SRP approach for

improving problem-solving performance.

5. Conclusion

Balancing between the exploration and exploitation

capabilities is an essential task in improving the metaheuristic

algorithm’s performance in recent years. The exploration

capability of the traditional ant colony optimization

technologies become weakness after accumulating great

amount of search experiences. Therefore, we introduce a novel

dynamic roulette strategy based on the MAX-MIN Ant System

to balance exploration and exploitation capabilities to improve

performance. The proposed MMASDRW-SRP algorithm

dynamically decides the number of candidate pairs based on

the searching situation to balance exploration and exploitation

capabilities, and then improve problem-solving performance

by reducing the risk of the algorithm falling into local optimal.

The experimental results presented in this paper indicate that

the proposed MMASDRW-SRP algorithm performs significantly

better than other traditional ACO-based algorithms in terms of

solution quality. It will be seen this that the dynamic roulette

strategy can be able to improve the problem-solving

performance.

Reference

[1] M. Ramzan, M. A. Iqbal, M. A. Jaffar, A. Rauf, S. Anwar and A. A.

Shahid, “Project Scheduling Conflict Identification and Resolution using

Genetic Algorithms,” Proceeding of International Conference on

Information Science and Applications (ICISA 2010), IEEE Press, 21-23

April 2010, pp. 1-6, doi: 10.1109/ICISA.2010.5480400.

[2] D. Greer and G. Ruhe, “Software release planning: an evolutionary and

iterative approach,” Journal of Information and Software Technology,

Vol. 46, pp. 243-253 (2004)

[3] G. Ruhe and A. N.o The, “Hybrid Intelligence in Software Release

Planning,” International Journal of Hybrid Intelligent Systems, Vol. 1,

issue 1-2, pp. 99-110 (2004)

[4] M. Dorigo, V. Maniezzo, and A. Colorni, “The Ant System: Optimization

by a Colony of Cooperating Agents”, IEEE Transactions on Systems,

Man, and Cybernetics, Part B: Cybernetics, vol. 26, no. 1, pp. 29-41,

1996.

[5] M. Dorigo and L. M. Gambardella “Ant Colony System: A cooperative

learning approach to the traveling salesman problem,” IEEE

Transactions on Evolutionary Computation, Vol. 1, No. 1, pp. 53-66

(1997)

[6] T. Stűtzle and H. H. Hoos, “MAX-MIN Ant System”, Journal of Future

Generation Computer Systems, Vol. 16, Issue 8, pp. 889-914 (2000)

[7] S.-H. Liu, M. Mernik and B. R. Bryant, “Entropy-Driven Parameter

Control for Evolutionary Algorithms,” Journal of Informatica, Vol. 31,

No. 1, pp. 41-50 (2007)

[8] J. Zhao and H. Sun, “A Two Sub-swarm Exchange Particle Swarm

Optimization Considering Exploration and Exploitation,” Proceeding of

International Conference on Industrial Mechatronics and Automation

(ICIMA 2010), IEEE Press, 30-31 May 2010, pp. 530-533, doi:

10.1109/ICINDMA.2010.5538254.

[9] G. Ruhe and M. O. Saliu, “The Art and Science of Software Release

Planning,” Journal of IEEE Software, Vol. 22, Issue 6, pp. 47–53 (2005)

[10] B. Bullnheimer, R. F. Hartl and C. Strauss, “A New Rank Based Version

of the Ant System: A Computational Study,” Central European Journal

for Operations Research and Economics, Vol. 7, No. 1, pp. 25-38 (1999)

[11] M. Dorigo and T. Stützle, Ant Colony Optimization, The MIT Press,

Cambridge (2004)

437

