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Abstract - In this study, the software releasing planning (SRP) 

problem resulted from incremental software development is 

considered. Software releasing planning has been proven to be a NP-

complete problem. Owing to the intractable nature of the problem, a 

heuristic approach based on ant colony optimization (ACO) can be 

applied to obtain satisfactory suboptimal solutions within a 

reasonable amount of computational cost. However, most realistic 

ACO-based approaches for software releasing planning still remain 

to be improved. A novel ant-inspired search algorithm is therefore 

proposed. The proposed algorithm, namely MMASDRW-SRP, adopts a 

dynamic roulette wheel strategy for giving a sophisticated balance 

between intensification and diversification, thereby improving the 

quality of solutions obtained. The performance of MMASDRW-SRP is 

demonstrated by comparing it against conventional ACO-based 

approaches. Experimental results indicate that the proposed 

MMASDRW-SRP algorithm performs significantly better than the 

competitive approaches. 

Index Terms - software release planning (SRP), ant colony 

optimization (ACO), MAX-MIN Ant System (MMAS). 

1.  Introduction 

Software project management aims to plan and monitor 

software projects using management knowledge and skills 

while working within the constraints of time, resources and 

budgets imposed by project environment and stakeholders [1]. 

The incremental software development model is one of the 

popular product development models in recent years. Release 

planning addresses the assignment of features to a sequence of 

consecutive releases such that the related resources and 

budgets constraints are satisfied [2]. Since the software release 

planning has been proven to be a NP-complete problem [3]. 

There are many studies have focused on various 

metahheuristic algorithms to acquire near-optimal solutions 

within a reasonable amount of computation time. For example, 

the famous Ant System (AS) proposed by Marco Dorigo is 

inspired from the foraging behavior of real ants in the early 

1990s [4]. In the AS, the experiences from previous attempts 

in solution searching guide artificial ants to construct feasible 

solutions and proceeds in a cooperative manner. Many 

researchers have proposed new approaches based on the 

preceding description of design principles which are known as 

Ant Colony Optimization (ACO), such as the ant colony 

system (ACS)  [5] and the MAX-MIN Ant System (MMAS) 

[6].  

In general, every metaheuristic algorithm must address 

two major capabilities for a search space:   

exploration and exploitation [7-8]. Exploration is a 

process of discovering potential solutions by directing the 

search space to entirely new regions to search for better 

solutions. To retain visited promising solutions, exploitation is 

a process of utilizing such visited information in obtaining 

areas to determine which regions of the search space should be 

explored next. The exploitation capability often suffers from a 

loss of diversity in feasible solutions, thus increasing the risk 

of becoming trapped in local optima. The advantage of the 

exploration is that it has higher opportunity of hopping from 

one local optimum to another; concurrently, however, it greatly 

increases the risk of the metaheuristic algorithm being unable 

to converge. For example, ant colony optimization can use the 

construction information of past solutions to ensure the 

validity of the generated problem solutions. This also leads the 

exploitation capability to become higher with the accumulation 

of search experiences, increasing the risk of the algorithm falls 

into local optimum as the search time increases. We can know 

that the control mechanisms for balancing exploration and 

exploitation have gradually become an essential factor in 

improving the performance of metachuristic algorithms [7-8]. 

Based on the design principle of balancing exploration and 

exploitation, we proposed MMASDRW-SRP approach to 

improve the performance by taking proposed dynamic roulette 

wheel strategy.  

The remainder of this paper is organized as follows. In 

the next section we describe the general formulation of the 

software release planning. In Section 3 we present the 

proposed MMASDRW-SRP algorithm in detail. We also 

describe our experimental study and its results in Section 4. 

Finally, we conclude this paper in the last section.  

2.  Problem Formulation 

The goal of release planning in incremental software 

development is to identify an optimal plan that maximizes the 

sum of all (weighted) priorities of all the different 

stakeholders. In this study, the symbol F = {f1, f2, …, f|F|} 

refers to the set of features in a software project and R = {r1, 

r2, …, r|R|} represents the set of releases that will be developed. 

The size of F and R are symbolized as |F | and |R|, 

representing the number of features and releases, respectively. 
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It indicates that the feature fi has been assigned to release rj in 

the case of x(i)=rj. 

Let P and C be a set of the precedence and the coupling 

relationships between features, respectively. (fi, fj)  P 

indicates that a precedence relationship exists between fi and fj, 

such that fj should not be delivered before fi. Moreover, (fi, fj) 

 C indicates that a coupling relationship exists between fi and 

fj, such that fi and fj should be delivered simultaneously. 

Precedence and coupling relationship constraints are given as 

follows: 

( ) ( ), ( , )
i j

x i x j f f P   ,                                           (1) 

( ) ( ), ( , )
i j

x i x j f f C   .                                           (2) 

Let T = {t1, t2, …, t|T|} be the set of |T| resource types in a 

software project. When delivering the feature fj,, the symbol njk 

indicates the consumption amount of resource type tk. In 

addition, the symbol capik denotes the maximum available 

amounts of the resource tk in the release ri. Thus, each release 

planning solution x must satisfy the following resource 

bounded constraint: 

( ) ,
j

x i r ik jk k j
n cap t T and r R      .                      (3) 

Let set S = {s1, s2, …, s|S|} be the collection of 

stakeholders in the software project. Each stakeholder spS is 

assigned a relative importance λp{1, 2, …, 9} by the project 

manager. The symbol valuepi{1, 2, …, 9} represents the 

perceived value of the feature fi for stakeholder sp. The symbol 

urgencypij{1, 2, …, 9} indicates the satisfaction with the 

situation that the feature fi is assigned to release rj for the 

stakeholder sp. Ruhe et al. proposed the following objective 

function F(x) for the feasible solution x: 

: ( )( )
j j

r R i x i r ij
F x WAS    ,                                            (4) 

where WASij refers to the weighted average satisfaction 

(WAS) of each stakeholder priorities for all features fi when 

assigned to release rj as designated in the function: 

p
s Sij j p pi pij

WAS value urgency 
      ,               (5) 

where ξi refers to the importance of the release ri in the 

software project development. Table 1 shows a software 

project example of software release planning. In this example, 

the maximum available amounts of the resource type t1 in the 

release r1 is cap11=1,300. The urgency19=(9, 0, 0) represents 

the degree of preference of assigning the feature f9 in release 1, 

2, and 3 is 9, 0, and 0 by the stakeholder s1, respectively.   

The dependency relationships between features in 

software projects can generally be characterized by a 

dependency graph. However, stakeholders usually only define 

direct relationships between features, and do not describe the 

derived relationships from current relation conditions. This 

increases the risk of the metaheuristic algorithms generating 

illegal solutions. To reduce the risk of generating illegal 

solutions, this study uses an activity graph G = (V, E) to 

describe the direct and derived dependency relationships 

between features. In the activity graph, the set V = {a1, a2, …, 

a|V|} consists of activities of software project and the set  E = 

{eij} consists of precedence relationships among activities. 

Each activity includes a single feature or several features with 

coupling relationships. The set 
i

F   refers to the collection of 

all features in activity ai. The size of V is symbolized as |V|, 

which represents the number of activities. A directed edge eij 

in set E indicates that a precedence relationship exists between 

activity ai and activity aj. Figure 1 shows the activity graph of 

the problem instance described in Table 1. 
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Fig.1. An example activity graph. 

Table 1. Relevant information about the example project. 

ai fi 

Resource type tj Stakeholder s1 Stakeholder s2 

Predecessor 
t1:ni1 t2:ni2 t3:ni3 t4:ni4 value1i urgency1i Value2i urgency2i 

a1 f1 150 120 20 1,000 6 (5,4,0) 2 (0,3,6) 
a2 

a2 f2 75 10 8 200 7 (5,0,4) 5 (9,0,0) 
- 

a3 f3 400 100 20 200 9 (9,0,0) 3 (2,7,0) 
- 

a4 f4 450 100 40 0 5 (2,7,0) 7 (7,2,0) 
- 

a5 f5 100 500 40 0 3 (7,2,0) 2 (9,0,0) 
- 

a6 f6 200 400 25 25 9 (7,2,0) 3 (5,4,0) 
a5 

a7 

f7 50 250 20 500 5 (9,0,0) 3 (2,7,0) 
- 

f8 60 120 19 200 7 (8,1,0) 1 (0,0,9) 

a8 

f9 280 150 40 1,500 6 (9,0,0) 5 (0,8,1) 
a7 

f12 100 300 25 50 3 (9,0,0) 7 (0,6,3) 

a9 f10 200 300 40 500 2 (5,4,0) 1 (0,0,9) 
- 

a1

0 

f11 250 375 50 150 1 (8,1,0) 5 (0,7,2) 
a3 

a1

1 

f13 100 250 20 50 7 (9,0,0) 9 (9,0,0) 
- 

 f14 0 100 15 0 8 (9,0,0) 3 (6,3,0) 
- 

a1

2 

f15 200 150 10 0 1 (0,0,9) 5 (3,6,0) 
a11 

cap1j 1,300 1,450 158 2,200      

cap2j 1,046 1,300 65 1,750      

 

3. The Proposed Algorithm 

The MMASDRW-SRP approach models the construction 

graph as a fully connected graph including |V|  |R| vertices to 

generate a feasible solution by artificial ant. Each vertex 

represents a pair between activities and releases, and any pair 

(ai, rj) indicates assigning all features of activity ai to release 

rj. A feasible solution can be formed as a tour with the length 
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|V| in the construction graph. For instance, in the software 

project presented in Table 1, the pair list L = < (a1, 1), (a2, 1), 

(a3, 1), (a4, 3), (a5, 1), (a6, 2), (a7, 2), (a8, 3), (a9, 3), (a10, 3), 

(a11, 1), (a12, 2)> is an example of feasible solutions, while the 

pair (a7, 2) indicates that the features f7 and f8 in the activity a7 

have been assigned to release 2. MMASDRW-SRP consists of 

initialization, construction, and feedback phases. The 

following subsections describe the operational processes of the 

MMASDRW-SRP approach.  

A.  Initialization phase of MMASDRW-SRP 

The main task of this phase is to determine the initial 

values of the parameters employed in executing MMASDRW-

SRP approach. For example, the initial value of the pheromone 

is set as 0.1 in this study. 

B.  Construction phase of MMASDRW-SRP 

The construction phase constructs feasible solutions and 

then evaluates their quality. In the MMASDRW-SRP approach, 

each feasible solution is determined through four steps: (1) 

constructing the set of feasible pairs and calculating the 

weights of all feasible pairs; (2) constructing the set of 

candidate pairs; (3) selecting the target pair; and (4) evaluating 

the quality of the feasible solution. These four steps are 

detailed as follows.   

Step 1. The set VN consists of activities with an 

undetermined release. An activity that has not been assigned to 

any release is called a ready activity if it does not have any 

immediate predecessor activity or the releases of all its 

immediate predecessor activities have been assigned. 

According to the content of the feasible solution pair list L, the 

set of ready activities VR is constructed based on the 

satisfactions of the precedence relationships. For each ready 

activity ai  VR, according to the current content of the feasible 

pair list L, the set of legal release FRi for the ready activity ai 

has been constructed based on the satisfactions of the 

precedence relationships of activities and the resource bound 

constraints. After completing the construction of the legal 

release set for each ready activity, the set of feasible pair set F
*
 

is constructed by the construction rule defined as 

 * ( , ) | and
i j i R j i

F a r a V r FR     .                     (6) 

For each pair (ai, rj)F
*
,
 
calculate the weight value wij, which 

indicates the suitability of ready activity ai being assigned to 

release rj. The weight value wij is given by 

 
[ ] [ ]

max |

ij

ij ij

ij j

WAS
w

WAS r R

 



 

 
,          (7) 

where τij represents the amount of pheromone trail for activity 

ai to be assigned to release rj, and two predefined parameters, 

α and β, are employed to adjust the relative influence of the 

pheromone trail and heuristic function. The two parameters are 

set as  = 1 and  = 2. Moreover, 
ij

WAS   refers to the 

weighted average satisfaction (WAS) when the activity ai is 

assigned to the release rj, which can be defined as 

[ ]
u i p

ij j p pu puj
f F s S

WAS value urgency 




 

     .          (8) 

Step 2. The candidate pair set C
*
 consists of all the 

candidate pairs selected from the feasible pair F
*
 using random 

selection. This study proposes the dynamic strategy for 

constructing the candidate pair set C
*
. The dynamic strategy is 

defined as 

 * 1 * *

| |
| | min [log ( 1)] | |, | |

F notimprove
C t F F   ,           (9) 

where tnotimprove refers to the number of unimproved iterations 

for the global best solution LGB. After determining the number 

of candidate pairs, the candidate pair set is accomplished by 

selecting |C
*
| different pairs from feasible pair F

*
 through 

random selection.  

Step 3. After constructing the candidate pair set, the 

artificial ant chooses the target pair (at, rt) from the candidate 

pair set using roulette wheel strategy. The symbol pij indicates 

the probability for the candidate pair (ai, rj) to be chosen, 

which can be defined as  

( , ) *
k l

ij

ij

kl
a r C

w
p

w





.                                           (10) 

The selected target pair (at, rt) is then included in the feasible 

solution L, and the target activity at is removed from the sets 

VN and VR. Repeat step 1 if VN is not empty; otherwise, 

proceed to the next step.  

Step 4. Once an artificial ant completes the construction 

task of the feasible solution, the quality of the feasible pair list 

L can be evaluated. The symbol CL refers to the evaluated 

value of the feasible pair list L, which can be defined as  

( , )
i j

L ij
a r L

C WAS 



  .                                          (11) 

After all artificial ants have completed the construction and 

evaluation of feasible solutions, the MMASDRW-SRP algorithm 

proceeds to the feedback phase. Otherwise, the artificial ants 

repeat the four steps in the construction phase. 

3.3 Feedback phase of MMASDRW-SRP 

In this phase, pheromone concentration is updated by 

(1 ) , if ( , )

(1 ) , otherwise

ij ij i j GB

ij

ij

a r L   


 

    
 

 

         (12) 

where  is the evaporation rate, and ij is defined as 

1 1

| |
(| |) (| |) log

GB
ij F L

S F C      ,                          (13) 

where |S| and |F| refer to the numbers of stakeholders and 

features in the software project and the symbol 
GBLC  refers to 

the quality of the global best solution LGB computed by (11). 

According to the limitations of pheromone concentration 

derived in the MMAS [6], the maximal and minimal amount of 

all possible pheromone trails are defined in the following:  
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1 1

max | |

1
(| |) (| |) log

GBF LS F C


           (14) 

max

min
2 | |V


 


                                            (15) 

4.  Performance Study 

The parameter values of these ACO-based approaches 

used for the test runs in all experiments [4, 5, 6, 10]. Due to 

the lack of a problem instance library of release planning in 

incremental software development, this study uses the problem 

instances based on the PSPLIB database of the multi-mode 

resource constrained project scheduling problem (MRCPSP). 

The benchmark sets for project instances of J10, J12, J14, J16, 

J18, and J20 include 536, 547, 551, 550, 552, and 554 

problem instances, respectively. Each problem instance was 

carried out one solution-finding run. Each run was stopped 

after 10,000 feasible solutions had been evaluated.  

A.  The Derived Srp Problem Instance 

For a project in MRCPSP, the set V consists of partially 

ordered activities and the set E is the set of precedence 

constraints among activities. Firstly, the content of feature set 

F, the precedence relationship set P and the set of resource 

types T in SRP were set as the content of set V, the content of 

set E and the content of renewable resource types set R in 

MRCPSP, respectively. The coupling relationship set C was 

set as null in the derived problem instance. According to the 

setting situation of some parameters in literature [9], the 

content of set S, R and the values of the relative importance of 

stakeholders and releases were set as S={s1, s2},  R={r1, r2, 

r3}={1, 2, 3}, λ1=6, λ2=4, ξ1=0.7, ξ2=0.3, ξ3=0.0, respectively. 

The calculation function of valuepi, nit and Capit are defined as 

follow.  

, andpi ip i pvalue d f F s S   ,                   (16) 

1

1

( ) , and
i

M

it imt i i
m

n r M f F t T



    ,                 (17) 

1( 1) , if 1 2 and ;

0, if 3.

j

jt i i
f F

it

i

n r r t T

Cap
r





     


 




       

(18) 

For MRCPSP problem instance, the symbol dip indicates 

the duration of activity ai in mode p, the symbol rimt indicates 

the consumption units of renewable resource t for activity ai in 

mode m, and the symbol Mi indicates the number of execution 

mode for activity ai. The urgency functions for stakeholder s1 

and s2 are defined as follow.  

1

(0, ,10 ), if 1 3;

( ,10 ,0), otherwise;

pi pi pi

i
pi pi

value value value
urgency

value value

  
 



  (19) 

2

(0, ,10 ), if 1 3;

( ,10 ,0), otherwise.

i i i
i

i i

w w w
urgency

w w

  
 



                    (20) 

where the definition of the symbol wi is defined as follow  

2 1( ) | | (max{ | }) 10
i i i i i

w L SUCC d a V       ,      (21) 

where the symbol Li indicates the maximal topology path 

length of activity ai in MRCPSP problem instance, and the 

symbol |SUCCi| represents the number of all immediate 

successor of activity ai in MRCPSP problem instance. 

Obviously, an activity of MRCPSP problem instance with 

more successors and higher length of maximal topology path 

means that this activity has higher influence on software 

project, and thus for the corresponding feature in derived SRP 

problem instance was assigned in early release. The urgency 

function for stakeholder s2 defined in equation (20) is designed 

based on the characteristic of precedence constraints, and the 

urgency function for stakeholder s1 defined in equation (19) is 

designed based on the business value of features. 

B.  Performance Comparison 

This subsection presents the experimental results obtained 

from the performance comparison of the proposed MMASDRW-

SRP approach with other ACO-based approaches AS-SRP, 

ASRank-SRP, ACS-SRP, and MMAS-SRP. In this experiment, 

the percentage of optimal solution found was measured for 

each solution-finding run on the J10, J12, J14, J16, J18, and 

J20 benchmark test instances. Table 2 demonstrates the 

experimental results. The experimental results shown in Table 

2 indicate that MMASDRW-SRP performs better than the other 

ACO-based approaches, especially when trying to solve the 

J20 benchmark. This is because the MMASDRW-SRP approach 

is capable of balancing the exploration and exploitation 

capabilities according to the search situation. For the 

traditional ant colony optimization technologies, the 

exploitation capability becomes higher with the accumulation 

of search experiences. Thus, the risk of the algorithm falling 

into local optimum increases over time.  

Table 2. Percentage ratio of the number of optimal solutions found by 

MMASDRW-SRP and the competitive approaches. 

 AS-SRP ASrank-SRP ACS-SRP MMAS-SRP This work 

J10 80.04% 84.33% 89.93% 95.52% 100.00% 

J12 79.16% 84.28% 87.57% 95.25% 100.00% 

J14 75.86% 79.49% 83.48% 94.56% 99.82% 

J16 65.82% 68.36% 75.82% 86.73% 98.91% 

J18 55.07% 63.95% 68.66% 84.24% 96.01% 

J20 50.18% 59.57% 63.00% 80.14% 94.40% 

To provide an intuitive explanation of what is happening 

during the search of the ACO-based approaches, this study 

analyzes the exploitation and exploration capabilities by 

tracking the evolution of the distance between ant paths along 

the search. The concept of distance is a way to calculate the 

difference between ant paths which was proposed in [11]. For 

release planning, one method of measuring the distance dist 

(L1, L2) between two solutions L1 and L2 is to count the number 
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of pairs that appear in the feasible solution L1, but not in the 

feasible solution L2. A higher value of the average distance 

among all ants indicates that the algorithm has higher 

exploration capability. A smaller value of the average distance 

among all ants indicates that the exploitation capability of 

algorithm has been promoted.  

 

Fig. 2. Comparison of solution-finding behavior among ant-inspired 

search techniques.  

Figure 2 shows the value of the average distance among 

all ants in each iteration of five ACO-based algorithms for a 

problem instance with 20 activities. After iteration 10, the 

value of the average distance among all ants ranges between 0 

and 2 for traditional ant colony optimization technologies. 

This indicates that the search is focusing more on exploitation 

after a short search of exploration. The traditional ant colony 

optimization technologies do not have enough exploration 

capability to help the algorithms jump out the local optimal. 

For MMASDRW-SRP approach, the value of the average 

distance among ants ranges between 1-3 and 6-8. This means 

that the curve of average distance for MMASDRW-SRP 

approach exhibits extreme shakiness. When the average 

distance ranges between 1 and 3, the MMASDRW-SRP 

approach has more exploitation capability, and when the range 

of the average distance ranges between 6 and 8, the 

exploration capability of the MMASDRW-SRP approach has 

been improved. When the algorithm finds difficulties during 

the MMASDRW-SRP approach with more exploitation 

capability, the exploration capability has been improved to 

find the potential new solutions. When the algorithm discover 

many local minima during MMASDRW-SRP approach with 

more exploration capability, the MMASDRW-SRP approach 

facilitates more exploitation to improve current approximate 

optimal solutions based on past searching experiences. 

According to the experimental results in table 3, the automatic 

alternate shifting between exploitation and exploration is an 

essential feature of the MMASDRW-SRP approach for 

improving problem-solving performance. 

5.  Conclusion 

Balancing between the exploration and exploitation 

capabilities is an essential task in improving the metaheuristic 

algorithm’s performance in recent years. The exploration 

capability of the traditional ant colony optimization 

technologies become weakness after accumulating great 

amount of search experiences. Therefore, we introduce a novel 

dynamic roulette strategy based on the MAX-MIN Ant System 

to balance exploration and exploitation capabilities to improve 

performance. The proposed MMASDRW-SRP algorithm 

dynamically decides the number of candidate pairs based on 

the searching situation to balance exploration and exploitation 

capabilities, and then improve problem-solving performance 

by reducing the risk of the algorithm falling into local optimal. 

The experimental results presented in this paper indicate that 

the proposed MMASDRW-SRP algorithm performs significantly 

better than other traditional ACO-based algorithms in terms of 

solution quality. It will be seen this that the dynamic roulette 

strategy can be able to improve the problem-solving 

performance. 
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