
Information Security based on Resource Conflict with SSH Architecture

Su Yu

College of Electronic and Electrical Engineering

Shanghai University of Engineering Science

Shanghai, China

 suyu_sh@hotmail.com

Ghassan M. Azar

Department of Mathemat ics and Computer Science

Lawrence Technological University

Southfield, MI, 48075, USA

 gazar@ltu.edu

Yin Wang

Department of Mathemat ics and Computer Science

Lawrence Technological University

Southfield, MI, 48075, USA

 ywang12@ltu.edu

Zhou Wei

 Co llege of Electronic and Electrical Engineering

Shanghai University of Engineering Science

Shanghai, China

 zhouwei@sues.edu.cn

Abstract—Role-based access control has become the
predominant model for advanced access control. SOD of

RBAC is a good way to solve the problem of resource

allocation and right management for improving the security of

the system. According to the needs of the MVC-based

information management system security, this paper
researches separation of duties (SOD) in Role-Based Access

Control, and then gives a program to implement RBAC model

as the framework of SSH. Finally, this paper describes how to

realize the RBAC in a specific information management system.

keywordss—- RBAC, SOD, SSH, MVC, Security Constraint

I. INTRODUCTION

Due to the popularity of the Internet and the development

of network technology, most of the enterprises or units have
their own Web sites. Through the Internet or an intranet,

enterprise management has become more convenient;
enterprise information dissemination has become more

convenient; enterprise marketing has become much easier.
The most number of Web systems exist to this problem: the

function is powerful, but there are a lot of security risks.
Different types of users in the system have the same

privileges to some information, and they can modify and

delete arbitrarily, which is very dangerous for some
important informat ion. As scientific management of

information, the highest level the user has the highest
authority of the information, and at the bottom or sub

underlying user has the least permissions information. In
addition, most of the Web system are the lack of a good

access control mechanisms. In the mechanism users, roles

and privileges are set, and then the roles are assigned for
different users, the privileges are assigned for different roles.

Finally priv ileges are associated with the users, for formation
of an effective system of safety management. In conclusion,

when the enterprises build their own web-based management
system, not only to consider the functional integrity and

simplicity of operation, but also to consider the security of

the system. Under the promise of safety, the functional
integrity and simplicity of operation makes sense.

Compared with traditional lattice-based access control
policies, such as Discretionary Access Control (DAC) and

Mandatory Access Control (MAC) developed primarily for
military systems(see Sandhu [2] for a discussion of these),

RBAC can more effectively meet the needs of commercial
systems[3][4]. Role-based access control mechanisms rely

on convenient resource management. In RBAC there are two

important factors. They are role inheritance and separation of
duties. Role inherited makes resource allocation management

easier; Role mutex achieves separation of duties and
improves efficiency and stability of system. Separation of

duties has some theoretical results, and many researchers
have given a variety of theoretical models . But in the

previous literature, how to implement the separation of

duties in the information management system was rarely
described. The implementation of the separation of duties is

far less than the theoretical research. So, the implementation
of the separation of duties still need further study. [1]

The main goal of this paper studies RBAC model
structure, specially focus on SOD and restrictions. After

intensive research RBAC theory, this paper designs the

RBAC model structure based on SOD and it can be used in
company's information management systems . The RBAC

model structure developed by this project can be used in the
web-based information management system. The system

uses SSH framework based on MVC, development software
is Java, database is MYSQL. Access control software based

on RBAC can be applied to the the waigaoqiao company's
management system.

II. SEPARATION OF DUTY (SOD)

Separation of duties (SOD) is the concept of having more

than one person required to complete a task. For example, in
business one person can not be an accountant while he is a

cashier. RBAC requires separation of duty to prevent a role

International Conference on Artificial Intelligence and Software Engineering (ICAISE 2013)

© 2013. The authors - Published by Atlantis Press 222

from having too many permissions. By this, RBAC can

secure system. Through role conflict, we can achieve SOD.
Role assignment is an important part of RBAC. But when

apply RBAC into a real system, security problems occurs
because of no constraint on role assignment. So SOD is

necessary to RBAC model. System security partly relies on
SOD. What SOD does in RBAC is to separate roles which

conflicts with each other. Strong constraint does not allow

any roles being added into role set. Weak constraint does not
allow roles in a special event being added into role set.

Combining with other limits, such as frequency constraint
and cardinality constraint, user will get through an SOD

firewall before role assignment, separating conflicting roles,
making role assignment and resources fetching safely.

SOD is very important in business system, also is one of
the most desired features in RBAC system. Admin istration

constraints may need to be enforced to prevent information

misuse and prevent fraudulent activities. A typical
authorization constraint, broadly relevant and well

recognized, is separation of duties (SOD). Reducing the risk
of fraud by not allowing any individual to have sufficient

authority within the system to single-handedly perpetrate
fraud is the intent of SOD. Such constraints can be easily

expressed using an RBAC model through SOD constraints

on roles, user-role assignments, and role-permission
assignments. Furthermore, using constraints on the activation

of user assigned roles, users can sign on with the least
privilege set required for any access. In case of inadvertent

errors, such least privilege assignments can contain damage.
As shown in Figure 1, it consists of three parts: users,

roles and permissions. The three roles (administrator,

accountant, clerk) are defined to be mutually exclusive;
admin istrator has permission to sign the checks, the

accountant has permission to prepare checks, the clerk has
permission to deliver checks; three users, Jack, Tom and

Rose, respectively to be assigned to the roles of admin istrator,
accountant and clerk; the initial state of system is static

separation of duties. A user can entrust own role to other
users. When Rose’s role is actived he can delegate the clerk’

role to Tom. So Tom has two mutually exclusive roles,

accountant and clerk. But he only can temporarily have a
role, and he can not activate two roles at the same time. The

state of the system is changed from static separation of duties
to the dynamic separation of duty. If the clerk role and

accountant role have permissions to the operation of the
same check, the system will enter the state of object-based

static SOD. It is that user assigned to clerk ro le and

accountant role can not have operation on the same check
more than two.

If Jack also delegates his role to Tom, then Tom would

Figure 1. Separation of Duties

have three roles: admin istrator, accountant and clerk.

Because these three roles can complete the entire check task

it is contrary to the role based on the operation-based static
SOD. Users can be assigned conflict roles, but not be able to

have all operations for complet ing a task. If Tom activates
three mutually exclusive roles at the same time without same

check (that is, the same object), the system will enter the

state of history dynamic SOD. SOD constraint strength
shown in Figure 2, from low to high, from strong to weak.

 Figure 2 SOD constraint relationship

The strongest constraint is in the state diagram at the

bottom. While implementing the strategy of SOD, the weak
constraints of SOD is more flexib le and more easy to

implement separation of duties , the strong constraints is
more d ifficult to achieve due to too strict. DSD constraint is

mainly carried out in the event. For example, an user need

SSD

DSD

HSD running/permission

running/permission

running/permission

 permission

 permission

w
e
a
k

 b
in

d
in

g
 stro

n
g

约
束
力

 弱

223

enter an event, such as the number of roles that user is

assigned is greater than or equal two, the DSD constraint will
be droved, if the role of user is in DSD, the role is a

constraint role and then user can’t be enter . When user is
assigned a role, SSOD constraint well be judged. In case of

its own role and selected role in the SSD, the role is a
constraint role and role should be assigned selected role.

III. SSH WORK MODE AND CONFIGURATION

Several problems can arise when applications contain a
mixture of data access code, business logic code, and

presentation code. Such applications are difficult to maintain,
because interdependencies between all of the components

cause strong ripple effects whenever a change is made
anywhere. High coupling makes classes difficult or

impossible to reuse because they depend on so many other

classes. Adding new data views often requires
reimplementing or cutting and pasting business logic code,

which then requires maintenance in multiple places. Data
access code suffers from the same problem, being cut and

pasted among business logic methods. The Model-View-
Controller design pattern solves these problems by

decoupling data access, business logic, and data presentation

and user interaction.
Model-View-Controller(MVC) is a software architecture

pattern which separates the representation of information
from the user's interaction with it. In addition to dividing the

application into three kinds of components, the MVC design
defines the interactions between them.

 Controller: a controller can send commands to its
associated view to change the view's presentation of the

model. It can also send commands to the model to update the

model's state.
 Model: a model notifies its associated views and

controllers when there has been a change in its state. This
notification allows the views to produce updated output, and

the controllers to change the available set of commands. A
passive implementation of MVC omits these notifications,

because the application does not require them or the software

platform does not support them.
 View: a view requests from the model the information

that it needs to generate an output representation.
SSH (struts, spring, hibernate, three frameworks for Java

platform) is a classic MVC pattern. Actually Struts is a fu ll
MVC pattern. ActionServlet which is a part of Struts plays

the controller role in MVC model. ActionForm and

JavaBean play the model role. And JSP plays the view role.
Spring framework is an open source application framework

and inversion of control container for Java platform. It
simplifies enterprise application development. Hibernate is

an object-relational mapping library for Java platform,
providing a framework for mapping an object-oriented

domain model to a trad itional relational database. Hibernate

solves object-relational impedance mismatch problems by
replacing direct persistence-related database accesses with

high-level object handing functions.

SSH as a classic MVC pattern, the three frameworks play

different ro les. Struts is responsible for the web layer. Spring
is for service layer (or called manager layer). And Hibernate

is for persistence layer. MVC-based SSH system in Figure 3.

Figure 3. MVC-based SSH system

As shown in SSH framework Struts implements the
MVC hierarchy, it makes JSP page, Action scheduling and

specific business logic processing separated; Hibernate
makes JDBC a very lightweight object package, which can

manipulate the database arbitrarily using the object-oriented
programming; Spring realizes interface-oriented

programming using JavaBean, and provides many enterprise

application functionality.

IV. A PROGRAM FOR IMPLEMENTING SOD

This project uses MySql as a background database. The
main line is user - role - permission – resource, respectively

corresponding to the many-to-many relationship. Three
intermediate tables are used. Extended separation of duties

requires a separate table to configure, User department also

requires the department table associated with the user table.
Login password for security purposes should establish a

password table associated with user table.
Database table structure as shown below.

 User Table (users): number, user number, user name,

gender, age, department number, description, the

history of role

 The role table (roles): Number, role number, inherited

role number, description, department number

 Permissions table (permission): Number, permissions

number, description

 Resource Table (resource): Number, resources number,

resource name, description

 corresponding table of Users - role (ua): Number, user

number, ro le number, description, role time, role using

total number, role using current number

 corresponding table of Role - permissions (pa): number,

role number, permission number, description

224

 corresponding table of Permission - resource (pr):

number, permission number, resource number,

operation

 separation of duties enumeration table (sod): number,

conflict roles 1, the conflict role 2, the separation of

duties types, description

 administrator password table (customer): number,

login name, password

 user password table (password): Number, user name,

password

 departments tables (department): Number, department

number, department name, description, department ext.

 Event table (event): number, event number, description,

whether the event is closed, the event staff number,

department number

 Event user table (eur): number, event number, event

user number, the event user roles number. wether is

activation

 Session table (sessions): number, session number,

session user number, session time

User transaction processing system flowchart as shown in

Figure 4.
The main function of foreground is to provide users with

reasonable access resources programs, and to achieve the
separation of duties rules. The foreground has event set,

event selection, role selection and of resource operation. In
which event set to judge whether the presence of the Minister

of user roles permission, if not the authority of the Secretary
can not set the event. Selection of the event, the first to

determine whether the user Minister added to this event, if it

has not added to the event, you can not enter this event. And
then determine whether the user first log on to the event, if it

is the first time you log in, you need to select the role in the
event, in the role is selected, it is necessary to determine

whether the role that has expired, and whether more than the
frequency of use, if you choose a multi-a role, the need to

determine whether the role of the role of the group have been

included in the table dynamic separation of duties conflict.
The Admin main task is to modify users, roles,

permissions, resources, separation of duties, as well as
correspondence between most of the backend interfaces are

used to configure these information. Information
configuration page include: user password modification,

department information changes, user information modify

the role information modify permissions information
changes, modifications of the resource information

corresponding informat ion to modify user roles, role
permissions corresponding information to modify

permissions to modify the resources corresponding
information, static separation of duties allocated to modify,

the historical separation of duties assigned to modify,

dynamic separation of duties assigned to modify.

Figure 4. User transaction processing system flowchart

225

V. CONCLUSIONS

The main topic of the role-based access control
mechanism is to solve the problem of the management of the

information management system. This paper details the
entire project from theoretical research to planning and

design, and then to complete the final step. The foreground
and background of the design is based on a three-tier

architecture, mainly to solve the user how to obtain resources,

and managers how to allocate resources . According to the
needs of the MVC-based information management system

security, this paper first researches separation of duties (SOD)
in Role-Based Access Control, as well as its application in

practice, and then gives a program to implement RBAC
model as the framework of SSH. Finally, this paper

describes how to realize the RBAC in a specific information

management system. The implementation of the project is
based on the Waigaoqiao Shipyard ERP, but because of the

amount of data is too large, the interception of the part of the
data used to test and validate the feasibility of the program.

The paper has a certain theoretical and practical value.

VI. ACKNOWLEDGMENT

Here special thanks to the two foundations for funding

the project. Research and Innovation Projects Of Shanghai
Municipal Education Commission, project number is

11YZ212.

REFERENCES

[1] David Farraiolo and Richard Kuhn, “Role-Based Access

Control,” 15th NIST-NCSC National Computer Security

Conference, 1992.

[2] Ravi Sandhu, “Lattice Based Access Control M odels,” IEEE

Computer, 26:11, November 1993.
[3] David D. Clark and David R. Wilson, “A Comparison of

Commercial and Military Computer Security Policies,”

Proceedings of the 1987 IEEE Symposium on Research in

Security and Privacy (SP'87), May 1987

[4] Michael J. Nash and Keith R. Poland, “Some Conundrums
Concerning Separation of Duty”, IEEE Symposium on

Research in Security and Privacy, May 1990.

[5] Jerome H. Saltzer and Michael D. Schroeder, “The Protection

of Information in Computer Systems,” Communications of

the ACM, 17:7, 1975.
[6] Ravi Sandhu et al. “Role Based Access-Control Models”,

IEEE Computer, February 1996.

[7] Ravi Sandhu, “Rationale for the RBAC96 Family of Access

Control Models.” Proceedings of the first ACM Workshop on

Role-based access control”, February 1996.
[8] David Ferraiolo et al., “Proposed NIST Standard for Role-

Based Access Control,” ACM Transactions on Information

and System Security, 4:3, August 2001.

[9] Simon, R. and Zurko, M. E. 1997. Separation of duty in role

based access control environments [C]. In Proceedings of the
10th IEEE Workshop on Computer Security Foundations

(Rockport, MA, June 10-12). IEEE Computer Society Press,

Los Alamitos, CA,183–194

[10] Virgil D. Gligor, Serban I. Gavrila, and David Ferraiolo. On
the formal definition of separation-of-duty policies and their

composition [C]. In Proceedings of IEEE Symposium on

Research in Security and Privacy, pages 172-183, Oakland,

CA, May 1998.

[11] Gail-Joon Ahn & Ravi Sandhu, “Role-based authorization
constraints specification,” J. ACM Transactions on

Information and System Security., 2000

[12] Chunyang Yuan et al., “A Verifiable Formal Specification for
RBAC,” Lecture Notes in Computer Science, 2006, Volume
4318/2006,

[13] Ferraiolo, D., Cugini, J., Kuhn, D. R. “Role-Based Access
Control (RBAC): Features and Motivations” [C]. Proc. 1995

Computer Security Applications Conference, 241-248,

December 1995.

[14] Ahn, G. -J. AND Sandhu, R. 1999. The RSL99 language for

role-based separation of duty constraints [C]. In Proceedings
of 4th ACM Workshop on Role-Based Access Control

(RBAC ’99, Fairfax, VA, Oct. 28-29). ACM, New York, NY,

43–54.

[15] G.J. Ahn, R. Sandhu. The RSL99 language for role-based

separation of duty constraints. ACM Workshop on Role-
Based Acces Control, Fairfax, Virginia, USA, 1999

[16] G.J. Ahn, R. Sandhu. Role-based authorization constraints

specification. ACM Trans on Information and System

Security, 2000, 3(4) :207-226

[17] D. R. Kuhn. Mutual exclusion of roles as a means of
implementing separation of duty in role-based access control

system. The 2nd ACM Workshop on Role-Based Access

Control, Fairfax, VA, 1977

[18] N H Li, Q H Wang, M V Tripumitara. Beyond separation of

duty: An algebra for specifying high-level security policies.
Purdue University, CERIAS, Tech Rep: 2005-75, 2005

[19] Joon S.Park et al., “Role-based access control on the web s,” J.

ACM Transactions on Information and System Security, April

2001.

[20] Jean Bacon et al., “A model of OASIS role-based access
control and its support for active security ,”, J. ACM

Transactions on Information and System Security., April 2002

[21] Jason Crampton, “Delegation in role-based access control ,” J.

International Journal of Information Security,2007.

[22] Zhang Zhiyong, “Collaboration Access Control Model for
MAS Based on Role and Agent Cooperative Scenarios,” J.

IEEE International Conference on Mechatronics and

Automation,2006

226

