

Rough Terrain Perception through Geometric Entities for Robot Navigation

Roberto Valencia-Murillo, Nancy Arana-Daniel, Carlos López-Franco and Alma Y. Alanís
Department of Computer Science

Universidad de Guadalajara
Guadalajara, Jalisco, México

Email: vamyur, n.arana.daniel, clzfranco, almayalanis@gmail.com

Abstract— This paper presents the implementation of a non-
linear geometric cost function to be used with a learning to
search algorithm (LEARCH) to robot navigation in rough
terrains. The non-linear function introduced is a neural
network trained with geometric entities as inputs (points, lines,
spheres, planes). These inputs were codified using the
Conformal Geometric Algebra framework in order to describe
the features of the rough environment where the robot is going
to navigate. The geometric entities contain implicitly more
information about rough terrain that simple features obtained
with image edge-detectors, furthermore by using them as
descriptors, the dimension of the feature space is greatly
reduced with regard to the dimension of features obtained with
sophisticated feature detectors as SIFT or SURF. The
advantages of using geometric entities with LEARCH
algorithm are shown in the experimental results section of this
paper.

Keywords-Autonomous Navigation; Mobile Robots;
Conformal Geometric Algebra; Learning From Demonstration

I. INTRODUCTION
Autonomous navigation in unstructured terrain for

mobile robots represents a challenge to the robotic
community. Performance of the robot traversing complex
terrain depends on its perceptual and planning systems. The
tasks of representing the environment and determining the
robot actions based on this representation relay in individual
performance and coupling of the mentioned systems.

The perceptual system creates a discrete model of the
environment to be used by the planning system. In the
simplest case, the interpretation determines which locations
of the environment model the robot can or cannot traverse.
However, in complex unstructured terrain this task is not that
simple, the problem comes when the robot has to decide in
nondeterministic way: sometimes objects may not be
obviously traversable such as steep slopes, ditches, smaller
(surmountable) objects, and widely varying vegetation. [1]

Different approaches address this problem; all of them
implement a cost function to continuously couple the
perceptual and planning systems. A cost function maps
terrain features produced by perception into a scalar cost
value with lower cost terrain being preferred over higher cost
terrain. A planning system then computes a trajectory that
minimizes the accrued cost of traversed terrain.

The most common approach to construct the cost
function is engineering and manual hand tuning [1]; this is
done with little or no formalism. However, there are some

reusable frameworks for manual design and tuning of cost
functions. This approach is time consuming; since complex
environment necessitate full featured and high dimensional
descriptions.

Physical simulation to attempt to predict the
consequences of a robot traversing a patch of terrain is
another common approach to engineering the problem [2],
[3], [4]. Instead of requiring a mapping from perceptual
features into cost, the robot maps from predicted states to
costs. Another possible method is computing the probability
of interaction with specific terrain patch which result on
vehicle failure. These two methods present significant
disadvantages. The first still needs construct a mapping from
a description of a behavior to a cost function, and the second
focus in the safety of the robot regardless the performance.
Besides, it is dangerous because the robot needs to interact
with non-traversable terrain to learn.

A different approach is supervised classification [1]. This
technique reduces a high dimensional feature space into a
lower dimensional space with more semantic meaning. It can
be used to label terrain as traversable and non-traversable.
However, even if classification is accurate, it rarely maps
directly to the correct behavior.

Self-supervised learning from experience does not
require expert interaction as other learning approaches.
Instead, the robot uses its own interactions to learn how to
interpret what it perceives. This learning can be used for
predicting various terrain properties such as roughness [5],
vehicle slip [6], soil cohesion [7], or vegetation height [8].
As other techniques based on the robot traversing capability,
it ignores the possibility of relative preferences amongst
equally traversable patches of terrain and is dangerous for the
robot.

Given the difficulties presented by the manually
engineering method to couple the perception and planning
systems, an alternative solution consists of avoiding this
problem by directly learning to map perception into actions.
This can be accomplished through learning from
demonstration. Although, a desirable behavior is very
difficult to quantify, a human expert usually knows the actual
correct behavior. So, in this approach, a human expert
demonstrates the desire behavior directly to the robot,
instead of tuning the cost function, and therefore the robot
can tune itself to match the demonstration. [1]

To use a searching metric politic as the one used by the
Inverse Optimal Control methodology is an alternative to
action prediction. While optimal control seeks a trajectory

2nd International Conference on Advances in Computer Science and Engineering (CSE 2013)

© 2013. The authors - Published by Atlantis Press 307

through a state space that optimizes some known metrics,
inverse optimal control seeks a metric such that a known
trajectory through a state space is optimal under that metric.
Within mobile robotics, one similar approach would be to
learn a cost function such that a robot planning system will
reproduce expert demonstrated behavior.

Inverse Reinforcement Learning [9] was the first
application of this idea to the Markov Decision Process
commonly used for the motion planning in mobile robotics.
This framework was later modified into a new approach
known as Apprenticeship Learning, and it produced linear
cost functions. However, there was no mechanism for
explicit matching expert behavior.

The Maximum Margin Planning [10] framework
addressed these problems by producing a deterministic
solution while also ensuring an upper bound on the mismatch
between demonstrated and planned behavior. This
framework has been extended to non-linear cost functions
with the learning to search algorithm (LEARCH) [11], [12].

In the LEARCH algorithm non-linear cost function might
be used, such as parametric functions, neuronal networks,
decision trees, etc. The results of the algorithm are affected
by the selection of the non-linear cost function. In this paper
neuronal networks were preferred over other non-linear cost
functions for its capabilities of learning and generalizing.
Also, the feature space in this paper is represented in
Conformal Geometric Algebra, this means that the features
of the environment are representing by geometric entities
(points, lines, planes and spheres). This kind of features
offers richer information of the environment where the
mobile robot navigates and therefore their use increases the
knowledge of the environment that the LEARCH algorithm
can use to find a more accurate mapping between
perceptions and actions as it is shown in Sec. V of this paper.

This paper address the complex unstructured terrain
navigation with a learning from demonstration approach
using neuronal networks trained with geometric entities as
environment descriptors in order to improve the results of the
LEARCH algorithm.

II. LEARNING FROM DEMONSTRATION
The objective of the learning from demonstration

approach is to imitate the behavior of a human expert. The
Maximum Margin Planning (MMP) approach constructs a
cost function where states with lower cost represent the
actions that the human expert would do.

In MMP there is a state space S which a planner operates.
A feature space F is defined over S. That is, for every x ∈ S,
it exists a corresponding feature vector Fx ∈ F. Fx represents
the output of a perception system to be used by a planner, it
must be mapped to a scalar cost value. Therefore, C is
defined as the weighted sums of functions Ri ∈ R, where R is
a space of limited complexity that map from the feature
space to a scalar.

The cost of a state x is C(Fx). Finally, a path P is defined
as a sequence of states in S that lead from start se to goal ge.
The cost of an entire path is simply defined as the sum of the

costs of all states along the path, or alternatively the cost of
cumulative feature counts.

 () ()x
x P

C P C F
∈

=∑ (1)
Consider a path Pe from a start space se to a goal ge. Is

reasonable to consider applying inverse optimal control if the
example path is provided via expert demonstration, then; that
is, seeking to find a cost function C such that Pe is the
optimal path from se to ge. If a regularization term is also
added to encourage simple solutions, the task of finding an
acceptable cost function from an example can be phrased as
the following constrained optimization problem:

[] ()

() ()
*

min REG
subject to cons

ˆ ˆ ˆ ˆ. . ,

traints
() ()

= , =
e

x x
x P

e e

x P

ePs t

O C C

C F C F

P P s s g g
∈ ∈

∀ ≠

=

≥∑ ∑ (2)

This optimization has a trivial solution C(Fx) = 0, this
issue is addressed including a margin in each constraint. The
size of the margin is dependent on the similarity between
paths; this is encoded by a loss function L(Pe, P) or Le,
because the loss function can be defined over a full path or
over a single state.

1 if
0 otherwise

e
e

x P
L

⎧ ∈
=
⎪⎪⎨⎪⎪⎩

 (3)

The definition of the loss function is somewhat
application dependant; the simplest form would be to simply
consider how many states the two paths share (a Hamming
loss). The effect of the scale of the margin is removed by the
regularization term. The constrained optimization can now
be rewritten as:

[] ()

() ()
*

min REG
subject to constraints

() ()

ˆ ˆ ˆ ˆ. . ,

(

s=s , =

)
e

x e x
x P x P

e e ePs t P p

O C C

g

C F L x F

g

C
∈ ∈

=

− ≥

∀ ≠

∑ ∑ (4)

Depending on the state space and the distance from se to
ge there is an unfeasible number of constraint. However, it is
not necessary to enforce every constraint. For any candidate
cost function, there is a minimum cost path between any two
waypoints P*. If this constraint is satisfied, by definition all
the other will be satisfied. The constraint is now defined as:

()()* ˆ
ˆ

arg min ()x eP
x P

P C F L x
∈

= −∑ (5)
It may not be always possible to exactly meet this

constraint therefore a slack term ζ is added and accounts for
the error in meeting the constraint, and λ balances the
tradeoff in the objective between regularization and meeting
the constraint.

[] ()min REGO C Cλ ζ= + (6)
However, the slack variable will always be tight. It will

be always exactly equal to the difference in path costs.
Therefore, it can be replaced in the objective function by the

308

constraint, resulting in the unconstrained optimization
problem.

()
ˆ

min [] ()

() min () ()
e

x x e
x P x P

O C REG C

C F C F L x

λ

∈ ∈

= +
⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎣ ⎦

∑ ∑ (7)

The final optimization seeks to minimize the difference
in cost between the example path Pe and the (loss augmented)
optimal path P*, subject to regularization. [1]

O[C] is convex, but non-differentiable; therefore, instead
of gradient descent, it can be minimized using the sub-
gradient method. Consider the sub-gradient in the space of
cost functions.

[] [] () ()
*e

F F F x F x
x P x P

O C REG C F Fλ δ δ
∈ ∈

∇ = ∇ + −∑ ∑ (8)
Where δ is the Dirac delta at the point of evaluation.
Applying gradient descent directly in this space would

result in an extreme form of overfitting; essentially, it would
involve rising or lowering the cost associated with specific
values of F encountered on either path, and would therefore
produce no generalization whatsoever. Instead, a different
space of cost functions is considered

()

(){ }

, Q,

Q :

i i i i
i

C C C R F R

R R F REG R v

η η
⎧ ⎫⎪ ⎪⎪ ⎪= = ∈ ∈⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

= → ∧ <

∑
 (9)

C is now defined as the space of weighted sums of
functions Ri ∈ Q, where Q is a space of functions of limited
complexity, it maps from the feature space to a scalar.
Choices of Q include linear functions, parametric functions,
neural networks, decision trees, etc. [1]

A gradient descent update takes the form of projecting
the functional gradient onto the direction set by finding the
element Ri ∈ Q that maximizes the inner product 〈−∇OF[C],
R*〉. The maximization of the inner product between the
functional gradient and the hypothesis space can be
understood as a learning problem.

[]

*

* *arg max ,

arg max ()
e

R F

R x x x
x P P

R O C R

y R Fα
∈ ∩

= −∇

= ∑

[] []()sgn
x xx F x FO C y O Cα = ∇ =− ∇ (10)

In this form, it can be seen that finding the projection of
the functional gradient involves solving a weighted
classification problem, and defining Q as a class of
regressors adds an additional regularization to each R*. [1]
[11] Intuitively, the regression targets, yx, are positive in
regions of the feature space that the planned path visits more
than the example path and negative in regions that example
path visit more than the planned path.

This approach can be understood as trying to minimizise
the error in visitation counts. U is defined as the cumulative
count of states x ∈ P such that Fx = F:

*

() ()

() ()
e

F x
x P

F x
x P

U F F

U F F

δ

δ

+
∈

−
∈

=

=

∑

∑

*

() () () () ()
e

F x F x
x P x P

U F U F U F F Fδ δ+ −
∈ ∈

= − = −∑ ∑ (11)
With this new definition of the problem, U can be used as

target to the inputs of neuronal network. The states visited by
the example path are separeted from the planned path. With
this classification cost function maps the features from the
example path with a lower cost than any other planned path.

III. CONFORMAL GEOMETRIC ALGEBRA

A. Geometric Algebra
Let Gn denote the geometric algebra of n dimensions,

which is a graded linear space. Gn is defined by G{p, q, r},
where p, q, and r stand for the number of basis vectors that
square to 1, -1, and 0, respectively, and fulfill n = p + q + r.
ei is used to denote the basis vector i

The inner product of two vectors is the standard scalar or
dot product, which produces a scalar. The outer or wedge
product of two vectors is a new quantity, which we call a
bivector. Thus, b ∧ a will have the opposite orientation,
making the wedge product anticommutative. The outer
product is immediately generalizable to higher dimensions.

In geometric algebra, G{p, q, r}, the geometric product of
two basis vectors, is defined as

1 for
1 for
0 for

1, ,
1, ,

1, ,
f r o

i j

i j

i j p
i j p p q
i j p q p

e e
q r

e e i j

= ∈ …
= ∈

⎧⎪⎪⎪⎪ −⎪⎪=⎨
+ … +

= ∈ +⎪⎪⎪⎪⎪⎪⎩

+ … + +
∧ ≠

This leads to a basis to the entire algebra
{ } { } { } { } { }1 21 , , , , ,i i j i j k ne e e e e e e e e∧ ∧ ∧ … ∧ ∧…∧ (12)
Any multivector can be expressed in terms of this basis.

For example G{4, 1, 0} has the basis:
{ } { } { }
{ } { } { }

1 5 12 13 45

123 345 1234 2345 12345

1 , , , , , , , ,

, , , , , ,

e e e e e

e e e e e I

… …

… … = (13)

B. Conformal Geometric Algebra
Geometric algebra G{4, 1} can be used to represent

Euclidean vector space 3 in 4,1 [13]. This space has an
orthonormal vector basis given by ei and eij=ei ∧ ej are
bivectorial bases and a bivector e23, e31 and e12 which
together with 1 correspond to Hamilton's quaternions.

The unit Euclidean pseudo-scalar Ie := e1 ∧ e2 ∧ e3, a
pseudo-scalar I = IeE, and the bivector E := e4 ∧ e5 = e4e5 are
used for computing Euclidean and conformal duals of
multivectors.
1) The Point：The vector xe 　　　 representing a point
after a conformal mapping is rewritten as

2
0

1
2c e ex x x e e∞= + + (14)

309

where the null vectors are the point at infinity e∞ = e4 + e5
and the origin point e0 = 1/2(e4 − e5) with the properties

2 2
0 0e e∞ = = and e∞ ∈ e0 = 1.

Given two conformal points xc and yc, we can define
 ()·c c c xx y y x e∞− = ∧ (15)

and, consequently, the following equality:
 () ()· ·c c c c c cx y y z e x z e∞ ∞∧ + ∧ = ∧ (16)

is fulfilled as well.
2) Spheres and Planes：The equation of a sphere of
raduis p centered at point pe∈ 3 can be written as (xe∈pe)2 =
p2. Since xc∈e0 = 1/2(xe − ye)2, where xe and ye are the
Euclidean components, and xc ∈ e0 = 1/2 p2, we can write the
formula above in terms of homogeneous coordinates. Since
xc ∈ e∞ = −1, we can factor the expression above to

21?

2c cx p p e∞
⎛ ⎞⎟⎜ − =⎟⎜ ⎟⎜⎝ ⎠ (17)

This equation correspond to the so-called inner product
null space (IPNS) representation, which finally yields the
simplified equation for the sphere as s = pc −1/2 p2e∞. Note
from this equation that a point is just a sphere with a zero
radius. Alternatively, the dual of the sphere is represented as
a 4-vector s* = sI. The advantage of the dual form is that the
sphere can be directly computed from four points as

 1 2 3 4

*
c c c cs x x x x= ∧ ∧ ∧ (18)

If one of these points is replaced for the point at infinity,
we get the equation of a 3D plane:

 1 2 3

*
c c c cx x x xπ

∞
= ∧ ∧ ∧ (19)

And π in standard IPNS form
 *I n deπ π ∞= = + (20)
Where n is the normal vector and d represents the Hesse

distance for the 3D space.
Table 1 summarizes the entities defined in the conformal

geometric algebra framework in its OPNS and IPNS
representations.

IV. LEARNING FROM DEMONSTRATION USING NEURAL
NETWORKS AND CONFORMAL GEOMETRIC ALGEBRA
In the present work a feature space is declared in G4,1,

this means that geometric entities are going to be used in
order to represent the features of the environment where the
robot navigates. The geometric entities used to model the
features in the environment are spheres, planes and points;
they model three types of obstacles: vegetation, rubble and
slopes.

LEARCH algorithm, as it was shown, is independent of
the feature space. Using this advantage, we can use
geometric entities or any other type of feature descriptors to
construct the cost function in this work. We compare the
efficiency of the LEARCH algorithm when it is using a
hybrid feature space and a geometric feature space to
describe the features of the environment, this was done in
order to show the learning improvement achieved when the
last one is used. In previous works [1], raw sensor data from

the perception system (LiDAR scanner and cameras) is used
to on-line train the cost function. After collecting sensor data,
it has to be processed in order to obtain the values of the each
feature vector, in [1] these values correspond to height,
density and solidness of the objects presented in each sensing
patch of the terrain. In this work the cost function was
trained off line using satellite maps and the training data in
the form of expert example behaviors was gathered by
having several real human walking trajectories on the
terrains, the process of translate features of the terrain into
feature vector values was made manually by a human expert.

Neuronal Networks are in most cases a good election
when capabilities of generalization are needed. The goal of
learning from demonstration is that mobile robots become
able to efficiently navigate through environments where
features may be significantly different from the environment
where they were trained. Therefore Neuronal Networks are
good tools to address the problem.

A. Feature spaces
Satellite maps of rough terrains were used (see top image

of Fig. 1) in order to obtain the traversability costs of each
patch of terrain. Each satellite map of dimension 200×200 m
was discretized into 2D grids. Each cell of the grid represents
a patch of 4×4m of rough terrain and each one of these
patches are represented as one vector in different features
spaces: one hybrid feature space (similar to the feature space
used in [1]) and one geometric feature space.

The hybrid feature space H is a vector space of features
with dimension dim(H) = 3. A vector Xhyb ∈ H is a ordered
set of real scalar values: the vegetation value represents its
density, rubble is represented as a binary value (representing
the presence or absence of rubble in the patch of the terrain),
and steepness of the slope is represented by a scalar value.

The geometric feature space SG is a vector subspace of
G4,1. The maximum dimension of the geometric entities used
to represent each patch of the real map is dim(SG) = 5 for
example, one sphere s ∈ SG s = e1 + 2e2 + e3 − 0.5e + e0.
Although dim(SG) > dim(H) the information about the
terrain contained in each geometric entity is more descriptive
than the information contained in the hybrid feature vector,
as it is shown in Sec. V.

TABLE I. REPRESENTATION OF CONFORMAL GEOMETRIC ENTITIES

Entity IPNS Representation PNS Dual Representation

Sphere 21
2

s p p e∞= − *
1 2 3 4*s x x x x= ∧ ∧ ∧

Point 2
0

1
2c e ex x x e e∞= + + *

1 2 3 4*x s s s s= ∧ ∧ ∧

Line e eL nI e mI∞= −
*

1 2L x x e∞= ∧ ∧

Plane n deπ ∞= + 1 2 3x x x xπ ∞= ∧ ∧ ∧

Circle 1 2z s s= ∧
*

1 2 3z x x x= ∧ ∧

Point Pair 1 2 3pP s s s= ∧ ∧
*

1 2pP x x= ∧

310

Figure 1. A test map for the algorithm. From the top to the bottom:
Image of site, costs mapped with the hybrid cost function, and costs
mapped with the geometric cost function. The reader can see that the

description of the terrain obtained with the costs learned with the
geometric function is much more detailed than the one obtained with

the hybrid function.

B. The neuronal network
In this work it was used a multilayer perceptron (MLP)

trained with Levenberg-Marquardt (LM) is the neuronal
network used in this work as a cost function. The selection of
LM to train the MLP was made based on the already
demonstrated speed and accuracy of this training method.

The space U obtained with (11) contains the target values
for each one of the inputs (hybrid space H or geometric
space SG) of the MLP. In U there are negative values, but in
robotic navigation negative values are not desirable.
Therefore a logistic function is used as transfer function for
the MLP and negative values of U are clamped to 0.

V. RESULTS
Tests of these feature spaces show clearly that Learning

from demonstration using Neuronal Networks and
Conformal Geometric Algebra is more efficient than using a
feature space of engineering hybrid data. As seen in Fig 1
this is evidence: The learned costs of the map obtained using
the hybrid cost functions are shown in the middle image of
Fig. 1, as the reader can see, these costs are less descriptive
of the features of the rough terrain shown in the map of the
top of the same figure, with respect to the costs learned by
the LEARCH algorithm using the geometric cost function
(bottom image of Fig. 1) which shown that LEARCH
algorithm learns a better (i.e. more descriptive)
generalization of the traversability costs of each patch of
terrain. Same results were obtained in all the experiments
conducted so far in this work (they are not shown because of
the space limit of this paper).

The Fig 2 shows the costs mapped by each approach in
using the same map.

The difference between planned paths and example paths
was validated for each cost function; the number of states
from planned paths different from the example path were
compared. The planned paths with geometric cost function
where nearly exactly to the example path in many of the tests.
A graphic with the precision of the planner using geometric
cost functions and hybrid cost functions can be seen in Fig 3.

VI. CONCLUSION
In this paper we address the task of interpreting

perceptual data to be used for efficient autonomous
navigation on unstructured terrain. The Conformal
Geometric Algebra approach was tested and compare with
the engineering approach with evident improved results. We
have shown that CGA can be applied on improving the
performance of the learning from demonstration algorithm.
Also, the Geometric Entities used in the tests offered a richer
description of the environment; this is shown in the accuracy
of the geometric cost function compared to the cost function
with the engineering features.

311

Figure 2. Differences of costs mapped with the two cost function over a
patch of terrain. It can be seen that the geometric function generalizes
costs of features of the environment which were not in the training set.

This features are mapped as low cost and some cases as 0 by the hybrid
cost function. Again, this shows that the level of detail of the rough

terrain description is increased by using the geometric cost function (and
it also matches better with the features of the real terrain).

Figure 3. Precision of the planner using learned costs for 100

trajectories.

Improper modeling of traversability preferences is
harmful to robot performance as improper modeling of
terrain preferences; it also contributes to the inability of some
planning systems to properly recreate demonstrated behavior.
In this work we were able of modeling proper traversability
preferences using geometric entities as features and a
neuronal network as a non-linear cost function to learn from

an expert demonstration and how it was shown in the
previous section the costs obtained using the geometric cost
function allow us to claim that this function contains
information which describes in a more detailed way the
features of the rough environment without increase the
dimensionality of the problem in a great way.

Future works will explore the implementation of other
neuronal networks as cost functions along with the
development of the automation of the process which
translates features of the terrain into feature vector values.

ACKNOWLEDGMENT
This work has been partially supported by grants

CONACYT CB-2008-01-106838, CB-156567 and CB-
103191

REFERENCES
[1] David Silver and J. Andrew Bagnell and Anthony Stentz, “Learning

from Demonstration for Autonomous Navigation in Complex
Unstructured Terrain,” The International Journal of Robotics
Research, vol. 29, num. 12, pp. 1965-1592, 2010.

[2] Olin, K.E. and Tseng, D.Y., “Autonomous cross-country navigation:
an integrated perception and planning system”, IEEE Expert, vol. 6,
num. 4, pp. 16-30, 1991.

[3] Iagnemma, K. and Genot, F. and Dubowsky, S., “Rapid physics-
based rough-terrain rover planning with sensor and control
uncertainty”, Robotics and Automation, 1999. Proceedings. 1999
IEEE International Conference on, vol. 3, pp. 2286-2291, 1999.

[4] Helmick, Daniel and Angelova, Anelia and Matthies, Larry, “Terrain
Adaptive Navigation for planetary rovers”, Journal of Field Robotics,
vol. 26, num. 4, pp. 391-410, 2009

[5] H. Dahlkamp and A. Kaehler and D. Stavens and S. Thrun and G.
Bradski, “Self-supervised Monocular Road Detection in Desert
Terrain”, Proceedings of Robotics: Science and Systems, Philadelphia,
USA, August 2006.

[6] Angelova, Anelia and Matthies, Larry and Helmick, Daniel and
Perona, Pietro, “Learning and prediction of slip from visual
information”, Journal of Field Robotics, vol. 24, num. 3, pp. 205-231,
2007.

[7] Iagnemma, K. and Shinwoo Kang and Shibly, H. and Dubowsky, S.,
“Online terrain parameter estimation for wheeled mobile robots with
application to planetary rovers”, Robotics, IEEE Transactions on, vol.
20, num. 5, pp. 921-927, 2004.

[8] Carl Wellington and Aaron Courville and Anthony (Tony) Stentz, “A
Generative Model of Terrain for Autonomous Navigation in
Vegetation”, The International Journal of Robotics Research, vol. 25,
num. 12, pp. 1287 – 1304, December 2006.

[9] Andrew Y. Ng. and Stuart J. Russell. “Algorithms for Inverse
Reinforcement Learning”, Proceedings of the Seventeenth
International Conference on Machine Learning, ICML '00, pp. 663-
670, San Francisco, CA, USA, Morgan Kaufmann Publishers Inc.

[10] Nathan Ratliff and J. Andrew (Drew) Bagnell and Martin Zinkevich,
“Maximum Margin Planning”, International Conference on Machine
Learning, July 2006.

[11] Nathan Ratliff and David Silver and J. Andrew (Drew) Bagnell,
“Learning to search: Functional gradient techniques for imitation
learning”, Autonomous Robots, vol. 27, num. 1, pp. 25 – 53, July
2009, Springer.

[12] David Silver and J. Andrew (Drew) Bagnell and Anthony (Tony)
Stentz, “High Performance Outdoor Navigation from Overhead Data
using Imitation Learning”, Robotics Science and Systems, June 2008.

[13] Li, Hongbo and Hestenes, David and Rockwood, Alyn, “Generalized
homogeneous coordinates for computational geometry”, Geometric
computing with Clifford algebras, pp. 27 – 59, 2001, Springer-Verlag.

312

