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Abstract— This paper presents the implementation of a non-
linear geometric cost function to be used with a learning to 
search algorithm (LEARCH) to robot navigation in rough 
terrains. The non-linear function introduced is a neural 
network trained with geometric entities as inputs (points, lines, 
spheres, planes). These inputs were codified using the 
Conformal Geometric Algebra framework in order to describe 
the features of the rough environment where the robot is going 
to navigate. The geometric entities contain implicitly more 
information about rough terrain that simple features obtained 
with image edge-detectors, furthermore by using them as 
descriptors, the dimension of the feature space is greatly 
reduced with regard to the dimension of features obtained with 
sophisticated feature detectors as SIFT or SURF. The 
advantages of using geometric entities with LEARCH 
algorithm are shown in the experimental results section of this 
paper. 

Keywords-Autonomous Navigation; Mobile Robots; 
Conformal Geometric Algebra; Learning From Demonstration 

I.  INTRODUCTION 
Autonomous navigation in unstructured terrain for 

mobile robots represents a challenge to the robotic 
community. Performance of the robot traversing complex 
terrain depends on its perceptual and planning systems. The 
tasks of representing the environment and determining the 
robot actions based on this representation relay in individual 
performance and coupling of the mentioned systems. 

The perceptual system creates a discrete model of the 
environment to be used by the planning system. In the 
simplest case, the interpretation determines which locations 
of the environment model the robot can or cannot traverse. 
However, in complex unstructured terrain this task is not that 
simple, the problem comes when the robot has to decide in 
nondeterministic way: sometimes objects may not be 
obviously traversable such as steep slopes, ditches, smaller 
(surmountable) objects, and widely varying vegetation. [1] 

Different approaches address this problem; all of them 
implement a cost function to continuously couple the 
perceptual and planning systems. A cost function maps 
terrain features produced by perception into a scalar cost 
value with lower cost terrain being preferred over higher cost 
terrain. A planning system then computes a trajectory that 
minimizes the accrued cost of traversed terrain. 

The most common approach to construct the cost 
function is engineering and manual hand tuning [1]; this is 
done with little or no formalism. However, there are some 

reusable frameworks for manual design and tuning of cost 
functions. This approach is time consuming; since complex 
environment necessitate full featured and high dimensional 
descriptions. 

Physical simulation to attempt to predict the 
consequences of a robot traversing a patch of terrain is 
another common approach to engineering the problem [2], 
[3], [4]. Instead of requiring a mapping from perceptual 
features into cost, the robot maps from predicted states to 
costs. Another possible method is computing the probability 
of interaction with specific terrain patch which result on 
vehicle failure. These two methods present significant 
disadvantages. The first still needs construct a mapping from 
a description of a behavior to a cost function, and the second 
focus in the safety of the robot regardless the performance. 
Besides, it is dangerous because the robot needs to interact 
with non-traversable terrain to learn. 

A different approach is supervised classification [1]. This 
technique reduces a high dimensional feature space into a 
lower dimensional space with more semantic meaning. It can 
be used to label terrain as traversable and non-traversable. 
However, even if classification is accurate, it rarely maps 
directly to the correct behavior. 

Self-supervised learning from experience does not 
require expert interaction as other learning approaches. 
Instead, the robot uses its own interactions to learn how to 
interpret what it perceives. This learning can be used for 
predicting various terrain properties such as roughness [5], 
vehicle slip [6], soil cohesion [7], or vegetation height [8]. 
As other techniques based on the robot traversing capability, 
it ignores the possibility of relative preferences amongst 
equally traversable patches of terrain and is dangerous for the 
robot. 

Given the difficulties presented by the manually 
engineering method to couple the perception and planning 
systems, an alternative solution consists of avoiding this 
problem by directly learning to map perception into actions. 
This can be accomplished through learning from 
demonstration. Although, a desirable behavior is very 
difficult to quantify, a human expert usually knows the actual 
correct behavior. So, in this approach, a human expert 
demonstrates the desire behavior directly to the robot, 
instead of tuning the cost function, and therefore the robot 
can tune itself to match the demonstration. [1] 

To use a searching metric politic as the one used by the 
Inverse Optimal Control methodology is an alternative to 
action prediction. While optimal control seeks a trajectory 
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through a state space that optimizes some known metrics, 
inverse optimal control seeks a metric such that a known 
trajectory through a state space is optimal under that metric. 
Within mobile robotics, one similar approach would be to 
learn a cost function such that a robot planning system will 
reproduce expert demonstrated behavior. 

Inverse Reinforcement Learning [9] was the first 
application of this idea to the Markov Decision Process 
commonly used for the motion planning in mobile robotics. 
This framework was later modified into a new approach 
known as Apprenticeship Learning, and it produced linear 
cost functions. However, there was no mechanism for 
explicit matching expert behavior. 

The Maximum Margin Planning [10] framework 
addressed these problems by producing a deterministic 
solution while also ensuring an upper bound on the mismatch 
between demonstrated and planned behavior. This 
framework has been extended to non-linear cost functions 
with the learning to search algorithm (LEARCH) [11], [12]. 

In the LEARCH algorithm non-linear cost function might 
be used, such as parametric functions, neuronal networks, 
decision trees, etc. The results of the algorithm are affected 
by the selection of the non-linear cost function. In this paper 
neuronal networks were preferred over other non-linear cost 
functions for its capabilities of learning and generalizing. 
Also, the feature space in this paper is represented in 
Conformal Geometric Algebra, this means that the features 
of the environment are representing by geometric entities 
(points, lines, planes and spheres). This kind of features 
offers richer information of the environment where the 
mobile robot navigates and therefore their use increases the 
knowledge of the environment that the LEARCH algorithm 
can use to find a more accurate mapping between 
perceptions and actions as it is shown in Sec. V of this paper. 

This paper address the complex unstructured terrain 
navigation with a learning from demonstration approach 
using neuronal networks trained with geometric entities as 
environment descriptors in order to improve the results of the 
LEARCH algorithm. 

II. LEARNING FROM DEMONSTRATION 
The objective of the learning from demonstration 

approach is to imitate the behavior of a human expert. The 
Maximum Margin Planning (MMP) approach constructs a 
cost function where states with lower cost represent the 
actions that the human expert would do. 

In MMP there is a state space S which a planner operates. 
A feature space F is defined over S. That is, for every x ∈ S, 
it exists a corresponding feature vector Fx ∈ F. Fx represents 
the output of a perception system to be used by a planner, it 
must be mapped to a scalar cost value. Therefore, C is 
defined as the weighted sums of functions Ri ∈ R, where R is 
a space of limited complexity that map from the feature 
space to a scalar. 

The cost of a state x is C(Fx). Finally, a path P is defined 
as a sequence of states in S that lead from start se to goal ge. 
The cost of an entire path is simply defined as the sum of the 

costs of all states along the path, or alternatively the cost of 
cumulative feature counts. 

        ( ) ( )x
x P

C P C F
∈

=∑      (1) 
Consider a path Pe from a start space se to a goal ge. Is 

reasonable to consider applying inverse optimal control if the 
example path is provided via expert demonstration, then; that 
is, seeking to find a cost function C such that Pe is the 
optimal path from se to ge. If a regularization term is also 
added to encourage simple solutions, the task of finding an 
acceptable cost function from an example can be phrased as 
the following constrained optimization problem: 
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This optimization has a trivial solution C(Fx) = 0, this 
issue is addressed including a margin in each constraint. The 
size of the margin is dependent on the similarity between 
paths; this is encoded by a loss function L(Pe, P) or Le, 
because the loss function can be defined over a full path or 
over a single state. 
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x P
L

⎧ ∈
=
⎪⎪⎨⎪⎪⎩

     (3) 

The definition of the loss function is somewhat 
application dependant; the simplest form would be to simply 
consider how many states the two paths share (a Hamming 
loss). The effect of the scale of the margin is removed by the 
regularization term. The constrained optimization can now 
be rewritten as: 
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Depending on the state space and the distance from se to 
ge there is an unfeasible number of constraint. However, it is 
not necessary to enforce every constraint. For any candidate 
cost function, there is a minimum cost path between any two 
waypoints P*. If this constraint is satisfied, by definition all 
the other will be satisfied. The constraint is now defined as: 

( )( )* ˆ
ˆ

arg min ( )x eP
x P

P C F L x
∈

= −∑      (5) 
It may not be always possible to exactly meet this 

constraint therefore a slack term ζ is added and accounts for 
the error in meeting the constraint, and λ balances the 
tradeoff in the objective between regularization and meeting 
the constraint. 

[ ] ( )min REGO C Cλ ζ= +        (6) 
However, the slack variable will always be tight. It will 

be always exactly equal to the difference in path costs. 
Therefore, it can be replaced in the objective function by the 
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constraint, resulting in the unconstrained optimization 
problem. 

( )
ˆ

min [ ] ( )
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e
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The final optimization seeks to minimize the difference 
in cost between the example path Pe and the (loss augmented) 
optimal path P*, subject to regularization. [1] 

O[C] is convex, but non-differentiable; therefore, instead 
of gradient descent, it can be minimized using the sub-
gradient method. Consider the sub-gradient in the space of 
cost functions. 

[ ] [ ] ( ) ( )
*e

F F F x F x
x P x P

O C REG C F Fλ δ δ
∈ ∈

∇ = ∇ + −∑ ∑   (8) 
Where δ is the Dirac delta at the point of evaluation. 
Applying gradient descent directly in this space would 

result in an extreme form of overfitting; essentially, it would 
involve rising or lowering the cost associated with specific 
values of F encountered on either path, and would therefore 
produce no generalization whatsoever. Instead, a different 
space of cost functions is considered 
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C is now defined as the space of weighted sums of 
functions Ri ∈ Q, where Q is a space of functions of limited 
complexity, it maps from the feature space to a scalar. 
Choices of Q include linear functions, parametric functions, 
neural networks, decision trees, etc. [1] 

A gradient descent update takes the form of projecting 
the functional gradient onto the direction set by finding the 
element Ri ∈ Q that maximizes the inner product 〈−∇OF[C], 
R*〉. The maximization of the inner product between the 
functional gradient and the hypothesis space can be 
understood as a learning problem. 
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In this form, it can be seen that finding the projection of 
the functional gradient involves solving a weighted 
classification problem, and defining Q as a class of 
regressors adds an additional regularization to each R*. [1] 
[11] Intuitively, the regression targets, yx, are positive in 
regions of the feature space that the planned path visits more 
than the example path and negative in regions that example 
path visit more than the planned path. 

This approach can be understood as trying to minimizise 
the error in visitation counts. U is defined as the cumulative 
count of states x ∈ P such that Fx = F: 

*
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With this new definition of the problem, U can be used as 

target to the inputs of neuronal network. The states visited by 
the example path are separeted from the planned path. With 
this classification cost function maps the features from the 
example path with a lower cost than any other planned path. 

III. CONFORMAL GEOMETRIC ALGEBRA 

A. Geometric Algebra 
Let Gn denote the geometric algebra of n dimensions, 

which is a graded linear space. Gn is defined by G{p, q, r}, 
where p, q, and r stand for the number of basis vectors that 
square to 1, -1, and 0, respectively, and fulfill n = p + q + r. 
ei is used to denote the basis vector i 

The inner product of two vectors is the standard scalar or 
dot product, which produces a scalar. The outer or wedge 
product of two vectors is a new quantity, which we call a 
bivector. Thus, b ∧ a will have the opposite orientation, 
making the wedge product anticommutative. The outer 
product is immediately generalizable to higher dimensions. 

In geometric algebra, G{p, q, r}, the geometric product of 
two basis vectors, is defined as 

1 for 
1 for 
0 for 
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This leads to a basis to the entire algebra 
{ } { } { } { } { }1 21 , , , , ,i i j i j k ne e e e e e e e e∧ ∧ ∧ … ∧ ∧…∧ (12) 
Any multivector can be expressed in terms of this basis. 

For example G{4, 1, 0} has the basis: 
{ } { } { }
{ } { } { }

1 5 12 13 45

123 345 1234 2345 12345

1 , , , , , , , ,

, , , , , ,

e e e e e

e e e e e I

… …

… … = (13) 

B. Conformal Geometric Algebra 
Geometric algebra G{4, 1} can be used to represent 

Euclidean vector space 3 in 4,1 [13]. This space has an 
orthonormal vector basis given by ei and eij=ei ∧ ej are 
bivectorial bases and a bivector e23, e31 and e12 which 
together with 1 correspond to Hamilton's quaternions. 

The unit Euclidean pseudo-scalar Ie := e1 ∧ e2 ∧ e3, a 
pseudo-scalar I = IeE, and the bivector E := e4 ∧ e5 = e4e5 are 
used for computing Euclidean and conformal duals of 
multivectors. 
1) The Point：The vector xe 　　　 representing a point 
after a conformal mapping is rewritten as 

2
0

1
2c e ex x x e e∞= + +           (14) 
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where the null vectors are the point at infinity e∞ = e4 + e5 
and the origin point e0 = 1/2(e4 − e5) with the properties 

2 2
0 0e e∞ = = and e∞ ∈ e0 = 1. 

Given two conformal points xc and yc, we can define 
      ( )·c c c xx y y x e∞− = ∧    (15) 

and, consequently, the following equality: 
     ( ) ( )· ·c c c c c cx y y z e x z e∞ ∞∧ + ∧ = ∧    (16) 

is fulfilled as well. 
2) Spheres and Planes：The equation of a sphere of 
raduis p centered at point pe∈ 3 can be written as (xe∈pe)2 = 
p2. Since xc∈e0 = 1/2(xe − ye)2, where xe and ye are the 
Euclidean components, and xc ∈ e0 = 1/2 p2, we can write the 
formula above in terms of homogeneous coordinates. Since 
xc ∈ e∞ = −1, we can factor the expression above to 

      
21?

2c cx p p e∞
⎛ ⎞⎟⎜ − =⎟⎜ ⎟⎜⎝ ⎠     (17) 

This equation correspond to the so-called inner product 
null space (IPNS) representation, which finally yields the 
simplified equation for the sphere as s = pc −1/2 p2e∞. Note 
from this equation that a point is just a sphere with a zero 
radius. Alternatively, the dual of the sphere is represented as 
a 4-vector s* = sI. The advantage of the dual form is that the 
sphere can be directly computed from four points as 

      1 2 3 4

*
c c c cs x x x x= ∧ ∧ ∧    (18) 

If one of these points is replaced for the point at infinity, 
we get the equation of a 3D plane: 

     1 2 3

*
c c c cx x x xπ

∞
= ∧ ∧ ∧    (19) 

And π in standard IPNS form 
         *I n deπ π ∞= = +    (20) 
Where n is the normal vector and d represents the Hesse 

distance for the 3D space. 
Table 1 summarizes the entities defined in the conformal 

geometric algebra framework in its OPNS and IPNS 
representations. 

IV. LEARNING FROM DEMONSTRATION USING NEURAL 
NETWORKS AND CONFORMAL GEOMETRIC ALGEBRA 
In the present work a feature space is declared in G4,1, 

this means that geometric entities are going to be used in 
order to represent the features of the environment where the 
robot navigates. The geometric entities used to model the 
features in the environment are spheres, planes and points; 
they model three types of obstacles: vegetation, rubble and 
slopes. 

LEARCH algorithm, as it was shown, is independent of 
the feature space. Using this advantage, we can use 
geometric entities or any other type of feature descriptors to 
construct the cost function in this work. We compare the 
efficiency of the LEARCH algorithm when it is using a 
hybrid feature space and a geometric feature space to 
describe the features of the environment, this was done in 
order to show the learning improvement achieved when the 
last one is used. In previous works [1], raw sensor data from 

the perception system (LiDAR scanner and cameras) is used 
to on-line train the cost function. After collecting sensor data, 
it has to be processed in order to obtain the values of the each 
feature vector, in [1] these values correspond to height, 
density and solidness of the objects presented in each sensing 
patch of the terrain. In this work the cost function was 
trained off line using satellite maps and the training data in 
the form of expert example behaviors was gathered by 
having several real human walking trajectories on the 
terrains, the process of translate features of the terrain into 
feature vector values was made manually by a human expert. 

Neuronal Networks are in most cases a good election 
when capabilities of generalization are needed. The goal of 
learning from demonstration is that mobile robots become 
able to efficiently navigate through environments where 
features may be significantly different from the environment 
where they were trained. Therefore Neuronal Networks are 
good tools to address the problem. 

A. Feature spaces 
Satellite maps of rough terrains were used (see top image 

of Fig. 1) in order to obtain the traversability costs of each 
patch of terrain. Each satellite map of dimension 200×200 m 
was discretized into 2D grids. Each cell of the grid represents 
a patch of 4×4m of rough terrain and each one of these 
patches are represented as one vector in different features 
spaces: one hybrid feature space (similar to the feature space 
used in [1]) and one geometric feature space. 

The hybrid feature space H is a vector space of features 
with dimension dim(H) = 3. A vector Xhyb ∈ H is a ordered 
set of real scalar values: the vegetation value represents its 
density, rubble is represented as a binary value (representing 
the presence or absence of rubble in the patch of the terrain), 
and steepness of the slope is represented by a scalar value. 

The geometric feature space SG is a vector subspace of 
G4,1. The maximum dimension of the geometric entities used 
to represent each patch of the real map is dim(SG) = 5 for 
example, one sphere s ∈ SG s = e1 + 2e2 + e3 − 0.5e + e0. 
Although dim(SG) > dim(H) the information about the 
terrain contained in each geometric entity is more descriptive 
than the information contained in the hybrid feature vector, 
as it is shown in Sec. V. 

TABLE I.  REPRESENTATION OF CONFORMAL GEOMETRIC ENTITIES 

Entity IPNS Representation PNS Dual Representation 

Sphere 21
2

s p p e∞= −  *
1 2 3 4*s x x x x= ∧ ∧ ∧  

Point 2
0

1
2c e ex x x e e∞= + +  *

1 2 3 4*x s s s s= ∧ ∧ ∧  

Line e eL nI e mI∞= −  
*

1 2L x x e∞= ∧ ∧  

Plane n deπ ∞= +  1 2 3x x x xπ ∞= ∧ ∧ ∧  

Circle 1 2z s s= ∧  
*

1 2 3z x x x= ∧ ∧  

Point Pair 1 2 3pP s s s= ∧ ∧  
*

1 2pP x x= ∧  

310



 

 

 

 

 
Figure 1.  A test map for the algorithm. From the top to the bottom: 
Image of site, costs mapped with the hybrid cost function, and costs 
mapped with the geometric cost function. The reader can see that the 

description of the terrain obtained with the costs learned with the 
geometric function is much more detailed than the one obtained with 

the hybrid function. 

B. The neuronal network 
In this work it was used a multilayer perceptron (MLP) 

trained with Levenberg-Marquardt (LM) is the neuronal 
network used in this work as a cost function. The selection of 
LM to train the MLP was made based on the already 
demonstrated speed and accuracy of this training method. 

The space U obtained with (11) contains the target values 
for each one of the inputs (hybrid space H or geometric 
space SG) of the MLP. In U there are negative values, but in 
robotic navigation negative values are not desirable. 
Therefore a logistic function is used as transfer function for 
the MLP and negative values of U are clamped to 0. 

V. RESULTS 
Tests of these feature spaces show clearly that Learning 

from demonstration using Neuronal Networks and 
Conformal Geometric Algebra is more efficient than using a 
feature space of engineering hybrid data. As seen in Fig 1 
this is evidence: The learned costs of the map obtained using 
the hybrid cost functions are shown in the middle image of 
Fig. 1, as the reader can see, these costs are less descriptive 
of the features of the rough terrain shown in the map of the 
top of the same figure, with respect to the costs learned by 
the LEARCH algorithm using the geometric cost function 
(bottom image of Fig. 1) which shown that LEARCH 
algorithm learns a better (i.e. more descriptive) 
generalization of the traversability costs of each patch of 
terrain. Same results were obtained in all the experiments 
conducted so far in this work (they are not shown because of 
the space limit of this paper). 

The Fig 2 shows the costs mapped by each approach in 
using the same map. 

The difference between planned paths and example paths 
was validated for each cost function; the number of states 
from planned paths different from the example path were 
compared. The planned paths with geometric cost function 
where nearly exactly to the example path in many of the tests. 
A graphic with the precision of the planner using geometric 
cost functions and hybrid cost functions can be seen in Fig 3. 

VI. CONCLUSION 
In this paper we address the task of interpreting 

perceptual data to be used for efficient autonomous 
navigation on unstructured terrain. The Conformal 
Geometric Algebra approach was tested and compare with 
the engineering approach with evident improved results. We 
have shown that CGA can be applied on improving the 
performance of the learning from demonstration algorithm. 
Also, the Geometric Entities used in the tests offered a richer 
description of the environment; this is shown in the accuracy 
of the geometric cost function compared to the cost function 
with the engineering features. 

311



 

 

Figure 2.  Differences of costs mapped with the two cost function over a 
patch of terrain. It can be seen that the geometric function generalizes 
costs of features of the environment which were not in the training set. 

This features are mapped as low cost and some cases as $0$ by the hybrid 
cost function. Again, this shows that the level of detail of the rough 

terrain description is increased by using the geometric cost function (and 
it also matches better with the features of the real terrain). 

 
Figure 3.  Precision of the planner using learned costs for 100 

trajectories. 

Improper modeling of traversability preferences is 
harmful to robot performance as improper modeling of 
terrain preferences; it also contributes to the inability of some 
planning systems to properly recreate demonstrated behavior. 
In this work we were able of modeling proper traversability 
preferences using geometric entities as features and a 
neuronal network as a non-linear cost function to learn from 

an expert demonstration and how it was shown in the 
previous section the costs obtained using the geometric cost 
function allow us to claim that this function contains 
information which describes in a more detailed way the 
features of the rough environment without increase the 
dimensionality of the problem in a great way. 

Future works will explore the implementation of other 
neuronal networks as cost functions along with the 
development of the automation of the process which 
translates features of the terrain into feature vector values. 
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