

Lightweight Model Driven Process to Ensure Model Traceability and a Case for
SYSMOD

Saulius Pavalkis1, Lina Nemuraite2
Department of Information Systems. Kaunas University of Technology,

Kaunas, Lithuania
1saulius.pavalkis@nomagic.com, 2lina.nemuraite@ktu.lt

Abstract—When various software and systems development
methodologies may be used in an organization, a problem
becomes the process how to ensure project traceability
independently from a chosen development method. Current
state of traceability implementations in CASE tools lack
flexibility, customizability and other qualities. The purpose
of the current paper is to present a traceability process,
independent from development methodology, and
demonstrate how developers may apply this process to
ensure a desirable traceability in their projects by using a
lightweight approach, based on derived properties and
general purpose traceability means, implemented in Model
Engineering Environment of their CASE tools.

Keywords-derived property based traceability; traceability;
metamodel; completeness validation

I. INTRODUCTION
The continuously growing complexity and

requirements for usability are inherent in modern “systems
of systems” where software and other kinds of systems
comprise the united whole. Examples of such complex
systems are the European Extremely Large Telescope,
modern car or locomotive, etc. On the other hand, the level
of required usability is already raised by modern software
such as Apple iOS. The holistic nature of system and
software projects requires high skills and automation.

Large and complex projects require multiple means to
manage complexity: acceptable time, appropriate team of
professionals, good communication between team
members, knowledge preservation in a case of team
member change, development method to manage
complexity, project traceability analysis, etc.
Organizations usually adopt development methods to their
needs. However, independently from a method, a project
manager should easily track completeness of a whole
project once the project is simultaneously changed by
different roles. Also, all project members should see their
position regarding completeness of their tasks in the
context of the whole project.

Despite achievements in model driven engineering [1],
current state of traceability implementations in CASE tools
lacks flexibility, customizability and other qualities,
analyzed by many authors [2]−[7], [8], [9], [10] and our
previous works [11]. In particular traceability information
pollutes models (traceability information can be redundant

at specific system stage specification or analysis) with
additional relationships that introduce dependencies and
tight coupling among project stages; traceability schemas
are hardly customizable and maintainable, so a care of
traceability usually causes additional overhead.

We have proposed the traceability solution [11], based
on derived properties, which is directed for solving these
traceability problems and is implemented in UML CASE
tool MagicDraw. The proposed traceability metamodel,
profile, and overall framework are independent from a
particular CASE tool. However, developers may wish to
create the specific traceability schema for development
methodology and/or modeling language as the schema
depends on types of modeling concepts and relationships,
which are intended to trace. Also, the quality of concrete
implementation of traceability means depends on existing
capabilities of CASE tools.

We have presented the derived property approach for
BPMN traceability in [12] and for custom software
development methodology in [11]. The purpose of the
current paper is to present a traceability process,
independent from development methodology, and
demonstrate how software and systems developers may
apply this process to ensure model traceability in their
projects by using a lightweight approach, based on derived
properties and general purpose traceability means,
implemented in Model Engineering Environment of their
CASE tools.

The rest of the paper is structured as follows. Section 2
presents the proposed traceability process. Section 3 shows
an example of applying the process for tracing
requirements using the SYSMOD method for modeling
systems. Section 4 analyses related works and gives a
comparison of the approach with existing capabilities of
similar tools. Section 5 presents conclusions and future
works.

II. DERIVED PROPERTY BASED TRACEABILITY
PROCESS

When various development methodologies may be
used in an organization, a problem becomes the process
how to validate model completeness independently from a
chosen development method. We will show that this is
possible with a straightforward model based traceability
process.

2nd International Conference on Advances in Computer Science and Engineering (CSE 2013)

© 2013. The authors - Published by Atlantis Press 219

Fig. 1 presents an essential part of the derived property
metamodel for traceability that supports the idea (the
complete metamodel is presented in [11]).

Figure 1. Part of the Derived Property Metamodel (excerpt from [11])

The Derived Property Metamodel extends UML
metaclass “Property” with a stereotype
<<derivedPropertySpecification>>. The latter has
expression, stereotyped as <<expressionSpecification>>,
for defining how this property is calculated. The stereotype
<<expressionSpecification>> extends UML metaclass
“OpaqueExpression” by redefining its properties
“language” and “body”. The property “body” of
<<expressionSpecification>> is used to specify a primitive
“ExpressionBody”, which has several subtypes:
<<SimpleExpression>>, multilevel <<Metachain
Expression>>, <<OCLExpression>>, and <<BinaryOr
ScriptingExpression>>. Such expressions may be
supported by various UML CASE tools. Other expression
types may be introduced as needed. The stereotypes are
included into UML traceability profile, which comprises a
part of a Model Engineering Environment.

In Model Engineering Environment, project tracing
and completeness validation process consists of 5 steps
presented in Fig. 2. These steps are:

• identification of major artifacts, whose evolution
through project stages should be traced;

• creation of traceability schema – traceability
relations among artifacts, which are dependent
upon development methodology;

• specification of derived properties, which should
be used for tracing relations among artifacts;

• creation of validation rules for checking coverage
of traceable artifacts;

• checking validation rules and analyzing results
(project completeness can be checked in any point
of time by any role).

It is worth to note that such process may be defined for
custom development methodologies and reused in many
projects, or adopted for a specific project if needed.

Figure 2. Project completeness validation process

III. TRACEABILITY ENSURING PROCESS EXAMPLE FOR
SYSMOD

We will demonstrate step-by-step how project
completeness validation process is adopted for SYSMOD
[13] − a pragmatic approach for modeling requirements as
well as a functional and physical architecture of a system.
It provides a toolbox of tasks with input and output work
products, guidelines and best practices using the OMG
Systems Modeling Language (SysML) [14]. SYSMOD is
used for creating an example of Car Access System model
(available online http://example.system-modeling.com)
using the CASE tool MagicDraw from NoMagic Inc.

A. Identification of Traceable Artifacts
We will concentrate on main SYSMOD artifacts

(which completeness represents project or stage
completeness) and relations among them created by roles
participating in the project (Table I). It took us one hour to
identify main artifacts (about 28.6% from the total time to
ensure traceability).

220

TABLE1 ARTIFACTS IDENTIFIED FOR TRACING PROJECTS, WHICH USE
SYSMOD

Discipline Model Artifact Primary
performer

Requirements
analysis

System
Requirements::
Objectives

Requirement System
analyst

Requirements
analysis

System
Requirements::
Essential

Requirement System
analyst

Requirements
analysis

Domain knowledge
model

<<Domain block>>
Block

System
analyst

Requirements
analysis

Use Cases <<System use
cases>>
 Use Case

System
analyst

System
Architecture

System Breakdown Block System
architect

B. Traceability schema
In order to create traceability schema for SYSMOD we

will take metaclasses of artifacts identified in the first step
and associate them with relations, which should exist
between them as tracing relations. Properties reflecting
these associations created for the intended traceability
schema will be owned by associations itself and will make
no influence on standard UML and SYSMOD metamodels.
The traceability schema for SYSMOD is presented in
Fig. 3 where associations between selected artifacts
identify the desirable traces, role names represent their
semantics.

We decided to skip optional artifacts from the
traceability schema and analyze coverage and
completeness of a model on the base of mandatory
artifacts Objective, Essential Requirements and System
Breakdown Block. The desirable completeness of the
model is defined by rules “Each Objective should be
traced by at least one Requirement” and “Each leaf
Requirement should be satisfied by at least one Block”.
The first rule is presented in the Traceability schema by
the multiplicity “1..*” of <<trace>> relation between
Objective and Requirement. The second rule cannot be
directly expressed by graphical notation. Both rules are
specified in OCL in Subsection 3.D. It took us one hour to
identify traceability schema (about 28.6% from the total
time to ensure traceability).

Note: too many artifacts will introduce overhead with
traceability management. Balance shall be maintained. It
took one hour to decide, which artifacts are desirable for
tracking their coverage by other artifacts in the further
project stages. Fragments of artifacts of a Car Access
System model are presented in Fig. 4.

Figure 3. Traceability schema for main artifacts of SYSMOD

Figure 4. Example of traceable artifacts of Car Access System model

C. Derived Properties for Traceability
According to the traceability schema we will identify

traceability rules and create derived properties for tracing
mandatory artifacts (Table II). We used simple expressions
for specification of traceability rules (derived relations
<<trace>> and <<satisfy>> among artifacts of the
<<weightedSatisfy>> stereotype adds a property to
calculate a rate of coverage). It took us 10 minutes to
create derived properties for traceability (about 4.8% from
the total time to ensure traceability).

TABLE2 DERIVED PROPERTIES AND TRACEABILITY RULES FOR CAR
ACCESS SYSTEM MODEL

Rule name Source
element

Expression Target
element

1 Trace Objective Trace Requirement
3 Satisfied By Requirement Satisfy Block

D. Validation rules for checking derived properties
Once derived properties are specified they appear in

specifications of corresponding elements and other places
in the same way as regular UML properties. Now we can
validate model completeness by performing coverage
analysis for discovering whether all objectives are covered
by requirements and requirements satisfied by design or
not. The following rules specified for validating the

221

desirable completeness of chosen artifacts are presented in
Table III.

TABLE3 VALIDATION RULES IN OCL TO CHECK COMPLETENESS OF
TRACEABILITY

No Rule
header

OCL
Expression

1 Context
Objective

(not self.ownedElement→
 exists(e|e.oclIsKindOf
 (SysML::Requirement))) implies
 derive:self.trace→size()>0

2 Context
Requirement

((not self.oclIsKindOf
 (SYSMOD::Objective)) and
 (not self.ownedElement→
 exists(e|e.oclIsKindOf
 (SysML::Requirement)))) implies
derive:self.satisfiedBy→size()>0

OCL constraints check the presence of values of
chosen traceability rules. The first rule checks if all
objectives of the project (specified as SysML objectives)
are covered by requirements. The second rule checks if all
leaf requirements of the project are satisfied by
architectural elements of the system. If some traceability
rule has a value it means that traceability relation and
coverage exist; otherwise, the artifact is uncovered.

E. Model validation
Now we can evaluate model against validation rules,

which are checked in a certain scope (i.e. package marked
with stereotype <<Validation suite>>). After some
iteration of improvements (that took about one hour of our
time – about 28.6% from the total time to ensure
traceability) the validation rules and scope of validation
gave expected results and became suitable for checking the
desirable completeness of project artifacts. The final
analysis of results after correction took 20 minutes – 9.4%
from the total time to ensure traceability.

F. Process implementation
The Derived Property Based Traceability means are

implemented in UML CASE tool MagicDraw reusing its
Domain Specific Modeling Environment, Customization
Engine, and other tool’s capabilities [15]−[17], [7].

IV. CONCLUSIONS AND FUTURE WORKS
The paper has presented the development method

independent process for adopting the proposed traceability
solution based on derived properties, and how it was
applied for the custom method for modeling systems −
SYSMOD. The use of the proposed process was
demonstrated for the real life example − Car Access
System model.

The presented example has shown that our model
driven traceability approach, based on derived properties,
is straightforward and easy path for checking the desirable
completeness of project models. It has taken less than 3.5
hours to set means for tracing given project artifacts and
validating their coverage. As the derived property based
traceability approach is implemented in UML CASE tool
MagicDraw, the process is actually used by MagicDraw

users. Of course, preparation for checking coverage of
project artifacts in practice depends on project and might
require slightly more efforts than in the presented case;
nevertheless, it may be accomplished much faster and
easier in comparison with other solutions. The only equal
solution with a similar number of steps to adopt to custom
development method is supported by non-modeling tool −
Geensoft Reqtify but it requires programmatic integration
with a modeling tool and adoption to a custom
development method, what is not easy to achieve.

Once adopted, validation means allows validating
models for completeness or tracking progress in any point
of time as often as needed. Validation is accomplished in a
single step without requiring for an additional time.

ACKNOWLEDGEMENT
The authors would like to thank No Magic, Inc,

especially the MagicDraw UML product team for the
comprehensive support.

REFERENCES
[1] C. Schmidt, “Model-Driven Engineering,” in IEEE Computer, vol.

39(2), pp. 25–31, 2006.
[2] O. C. Z. Gotel, A. C. W. Finkelstein, “An analysis of the

requirements traceability problem,” in 1st IEEE International
equirements Engineering Conference (RE’94) Proceedings, pp.
94–101, IEEE Computer Society, New York, 1994.

[3] R. Watkins, M. Neal, “Why and how of requirements tracing,”
IEEE Softw, vol. 11(4), pp. 104–106, 1994.

[4] B. Ramesh, M. Edwards, “Issues in the development of a
requirements traceability model” in Proceedings of the IEEE
International Symposium on Requirements Engineering, pp. 256–
259, IEEE Computer Society, New York, 1993.

[5] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, Y. Shaham-Gafni,
“Model traceability,” IBM Systems Journal vol. 45 (3), pp. 515–
526, 2006.

[6] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, E. Merlo,
“Recovering traceability links between code and documentation”
IEEE Transactions on Software Engineering vol. 28 (10), pp. 970–
983, 2002.

[7] J. H. Hayes, A. Dekhtyar, J. Osborne, ”Improving requirements
tracing via information retrieval,” in Requirements Engineering
Conference, 2003, Proceedings, 11th IEEE International, pp. 138–
147, 2003.

[8] L. C. Briand, Y. Labiche, T. Yue, “Automated traceability analysis
for UML model refinements,” in Information and Software
Technology, vol. 51(2), pp. 512−527, 2009.

[9] T. D. Meijler, J. P. Nytun, A. Prinz, H. Wortmann, “Supporting
fine-grained generative model-driven evolution,” Software and
Systems Modeling, vol. 9(3), pp. 403−424, 2010.

[10] S.A. Sherba, K.M. Anderson, M. Faisal, “A Framework for
Mapping Traceability Relationships,” in Proceedings of the 2nd
International Workshop on Traceability in Emerging Forms of
Software Engineering, Montreal, Canada, September 2003.

[11] S. Pavalkis, L. Nemuraite, R. Butkiene, “Derived Properties: A
User Friendly Approach to Model Traceability,” Information
Technology and Control, Kaunas, vol. 42(1), pp. 48–60, 2013.

[12] S. Pavalkis, L. Nemuraite, E. Mileviciene, “Towards Traceability
Metamodel for Business Process Modeling Notation,” in IFIP
Advances in Information and Communication Technology, vol.
353, 1868-4238. pp. 177–188. Heidelberg, Dordrecht, London,
New York: Springer, 2011.

222

[13] “SYSMOD − The Systems Modeling Process,” 2011,
http://sysmod.system-modeling.com/

[14] OMG, “OMG Systems Modeling Language (OMG SysML),”
Version 1.2, OMG, OMG Document Number: formal/2010-06-01,
2010.

[15] D. Šilingas, R. Butleris, “Towards Implementing a Framework for
Modeling Software Requirements in MagicDraw UML,”
Information Technology and Control vol. 38(2), pp. 153–164, 2009.

[16] D. Šilingas, R. Vitiutinas, A. Armonas, L. Nemuraite, “Domain-
specific modeling environment based on UML profiles,” in
Information Technologies' 2009: proceedings of the 15th
International Conference on Information and Software
Technologies, IT 2009, Kaunas, Lithuania, April 23-24, 2009, pp.
167-177. Kaunas University of Technology, Technologija, Kaunas,
2009.

[17] No Magic, Inc., “UML Profiling and DSL,” 2011,
https://secure.nomagic.com/files/ manuals/UML%
20Profiling%20and%20DSL%20UserGuide.pdf

223

