
BTS-SRP: An Energy-Efficient Concurrency Control Protocol for Embedded Real-
Time Systems

Jun Wu and Jun-Xing Wu
Department of Computer Science and Information Engineering, National Pingtung Institute of Commerce

900 Pingtung City, Taiwan, R.O.C.
junwu@npic.edu.tw and s100318010@student-mail.npic.edu.tw

Abstract—We explored the scheduling problem of dependent
real-time tasks that may access multiunit resources on a non-
ideal dynamic voltage scaling (DVS) processor. Based on the
stack resource policy (SRP) protocol and the earliest deadline
first (EDF) algorithm, we propose an approach, called
blocking-time stealing stack resource policy (BTS-SRP), for the
scheduling of dependent real-time tasks. Under the BTS-SRP,
tasks are executed at proper processor speeds which are
calculated according to the sufficient schedulability condition
of the EDF and the SRP. In order to obtain more energy saving,
a blocking-time stealing method is also proposed to
dynamically adjust the processor speed. Our experimental
results show that the BTS-SRP outperforms pervious work.

Keywords-Real-Time Task Scheduling; Concurrency Control;
Dynamic Voltage Scaling

I. INTRODUCTION
In the past decades, many excellent approaches have

beenproposed so as to reduce energy consumption of real-
timetasks on DVS platforms. A comprehensive survey
ofenergyefficient real-time scheduling can be found in [1].
Most worksassume that tasks are independent, however,
relatively little work hasbeen done for dependent real-time
tasks. In many real applications, however, tasks are
dependent because of resource sharing.

Based on the priority ceiling protocol (PCP)[2]
and/orthe stack resourcepolicy (SRP)[3], a simple strategy
that uses two speeds, i.e., low speed and high speed, to
execute tasks. Initially, a task is executed at the low speed
and then it switches to the high speed when it is blocked.
Those two speeds are usually calculated based on the
sufficient schedulability condition of tasks so that the
energy consumption can be reduced without violating their
timing requirements. This strategy is called two-speed
strategy (TSS), and it is common for energy-efficient
scheduling of dependent tasks under different assumptions
on the task and system models, such as [4-11].In particular,
Zhang and Chanson [4], and,Jejurikar and Gupta [7]were
proposed excellent TSS-based approaches for dependent
tasks with non-preemptible and preemptible critical sections,
respectively.

This paper considers that tasks are periodic and
preemptible, and dependent due to the resource sharing. We
assume that a set of multiunit resources can be accessed
during the execution of tasks. Note that each multiunit
resource has a fixed number of units in the system. An SRP-
based approach, called blocking-time stealing stack resource

policy (BTS-SRP), is proposed so as to manage the resource
sharing problem and to reduce the energy consumption of
tasks without violating their timing constraints. The BTS-
SRP uses the EDF for scheduling dynamic-priority tasks.
Under the BTS-SRP, tasks are scheduled to be executed at
proper processor speeds which are calculated according to
the sufficient schedulability condition for the EDF algorithm.
We also propose a blocking-time stealing method to reclaim
the blocking time for slowing down the processor speed. As
the results, more energy saving could be obtained. The
capabilities of the BTS-SRP were evaluated by experiments.
It shows that our proposed BTS-SRP outperforms previous
work.

II. SYSTEM MODEL AND PROBLEM DEFINITIONS

A. DVS Processor Models
We assume that tasks are executed on a non-ideal DVS

processorwhich supports a set of k discrete speeds ܵ ൌ
ሼݏଵ , ,ଶݏ … , ଵݏ௞ሽ, whereݏ ൏ ଶݏ ൏ ڮ ൏ ௠௔௫ݏ ௠௜௡ andݏ ௞. Letݏ
denote the lowest and the highest speeds (i.e., ݏ௠௜௡ ൌ ଵݏ
and ݏ௠௔௫ ൌ ௞). All speeds are normalized with respect toݏ
the s௠௔௫=1. The power consumption of a DVS processor is
defined as a function of the processor speed, denoted by
 The energy .ݐ ሻ be the processor speed at timeݐሺݏ ሻ.Letݏሺܥܲ
consumption ܥܧሺ୲భ,୲మሿ in time interval ሺݐଵ, ଶሿݐ is defined
by׬ ௧మݐ݀ ሻሻݐሺݏሺܥܲ

௧భ
.

B. Task and Resource Models
A set of n periodic dependent tasks࣮ ൌ ሼ߬ଵ, ߬ଶ, … , ߬௡ሽ is

considered in this paper. A periodic task τiis a template of
its instances. The task instances of a task will arrive
regularly for every period ௜ܶ. Let ߬௜,௝ denote the jth instance
of task ߬௜ . The worst-case computation amount and the
deadline of a task ߬௜ are defined by ܥ௜ andܦ௜ . When ߬௜ is
executed at a speed ݏ௫, the worst-case execution time of ߬௜
isܥ௜/ݏ௫ . We consider well-formed tasks which satisfy0 ൑
௜ܥ ൑ ௜ܦ ൑ ௜ܶ, ௜߬ ׊ א ࣮. We also assume that the deadline is
equal to the period, i.e., ܦ௜ ൌ ௜ܶ. The priority of a task߬௜ is
defined by ݌௜.

We assume that a set of mmultiunit resources ࣬ ൌ
,ଵݎ ,ଶݎ … , ௠ሽݎ are accessed by tasks[3].Each multiunit
resource ݎ௝ has a fixed number of units, denoted as ௥ܰೕ . A
task ߬௜ may make one or more requests for accessing
multiunit resources during its execution. Let μ

௥ೕ
ሺ߬௜ሻbe the

2nd International Conference on Advances in Computer Science and Engineering (CSE 2013)

© 2013. The authors - Published by Atlantis Press 200

number of units of resource ݎ௝ requested by task ߬௜ , and

μ
௥ೕ

ሺ߬௜ሻ ൏ ௥ܰೕ for 1 ൏ ݅ ൏ ݊. Resources are assumed to be

guarded by semaphores, and the time interval during the
accessing of a resource is called a critical section.

Letࣴ௜ ൌ൏ ,௜,ଵݖ ,௜,ଶݖ … , ௜,௡೔ݖ ൐be the list of ߬௜ ’s critical
sections. Each critical section ݖ௜,௝ is a request which needs

μሺz௜,௝ሻ units of the resource ࣬ሺݖ௜,௝ሻ . The computation
amount of a critical section z௜,௝ is defined by |z௜,௝| . The
execution time of a critical section ݖ௜,௝ is |z௜,௝| ௫ݏ/ if the
processor speed is ݏ௫ .Before a task can enter a critical
section, it must wait for sufficient units of the resource and
the access right has been granted. A task ߬௜ is said to be
blocked by a lower-priority task ௝߬’s critical section if it has
to wait for ௝߬ to exit the critical section in order to resume its
execution.

C. Problem Definitions
Let lcm denotes the least common multiple of all tasks'

periods (also called hyperperiod). Since the taskset ࣮repeats
an identical execution trace every hyperperiod, we only
need to examine the time interval (0, lcm] for analyzing the
performance and schedulability of the entire schedule [13].
The research problem is as follows:

For a given set of dependent real-time tasks ࣮ and a set
ofshared multiunit resources ࣬. The problem is to schedule
࣮ and to synchronize their accesses of shared multiunit
resources ࣬ on a non-ideal DVS processor such that

(1) tasks have to meet their timing constraints, and
(2) minimizes׬ ௟௖௠ݐ݀ ሻሻݐሺݏሺܥܲ

଴ . □

III. BLOCKING-TIME STEALING STACK RESOURCE
POLICY (BTS-SRP)

A. Task Scheduling and Resource Access Control
The rules for task scheduling and concurrency control are

as the same as those of the EDF and the SRP, respectively.
Let ߨ௜ be the preemption level of a task ߬௜. Under the BTS-
SRP, each task is assigned a fixed preemption level inversely
proportional to its deadline (i.e., π௜ ൐ π௝ ֞ ௜ܦ ൏ .(௝ܦ

Each resource ݎ௝ is required to have a current ceiling ܮܥ௥ೕ,
which is calculated as a function of the units ofݎ௝ that are
currently available. It can be computed by

௥ೕܮܥ ൌ max

த೔ א ࣮
ሼሼ0ሽ ׫ ሼߨ௜ ׷ ݊௥ೕ ൏ μ

௥ೕ
ሺ߬௜ሻ ሽ ሽ

,where݊௥ೕ is the number of units ofݎ௝ which are currently
available. We also define ߨ௦ as the system ceiling which is
computed as follows:

௦ߨ ൌ max
௥ೕ א ࣬

ሼ0, ௥ೕሺ݊௥ೕሻሽܮܥ

The rules for concurrency control of the BTS-SRP are as
the same as those of the SRP. Note that we use ݐ௜,௝

௛ to denote
the time that߬௜,௝ becomes the highest-priority task.

B. Schedulability and the Base Processor Speed
Under the BTS-SRP, the execution speeds of tasks are

considered based on the worst-case conditions for the EDF
algorithm. Equation (1) is the sufficient schedulability
condition for the EDF and the SRP.

෍
௞ܥ ൅ ௞ܤ

௞ܦ

௡

௞ୀଵ

 ሺ1ሻ

,whereܤ௜ is the maximum blocking time of߬௜. Note that the
worst-case blocking time of τ௜ is ܤ௜/ݏ௫ when the processor
speed is ݏ௫. The following equation shows the value of the
base processor speedݏ௕ which is the lowest processor speed
for executing tasks without violating their timing constraints.

௕ݏ ൌ max
ୱೕא ௌ.

 ሼݏ௝ ׷ ෍
௞ܥ ൅ ௞ܤ

௞ܦ

௡

௞ୀଵ

൑ ௝ሽ ሺ2ሻݏ

C. Task Execution Speed and Blocking-Time Stealing
Firstly, all task's critical sections are assigned to be

executed at the base processor speed ݏ௕. It ensures that the
actual blocking time of any task ߬௜ does not exceed ܤ௜/ݏ௕.
Secondly, every task instance߬௜,௝ is assigned to be executed
at speedݏ௜,௝

כ ൑ ௕ݏ excepts its critical sections (note that all
critical sections are executed at the base processor speed).

The blocking interval of a task instance is a time interval
when the task instance is blocked. Since the BTS-SRP
extends from the SRP, a task instance has at most one
blocking interval before it starts [3]. For any task instance
߬௜,௝, the blocking interval is starting from the time that ߬௜,௝
becomes the highest-priority task among all tasks ready to
run, i.e., at time ݐ௜,௝

௛ . And the interval is ending at the time the
task instance is scheduled to start its execution. If ߬௜,௝ starts
its execution at time ݐ௜,௝

௦ , then the blocking interval is [ݐ௜,௝
௛ ,

௜,௝ݐ
௦). Since all critical sections are executed atݏ௕, the worst-

case blocking time of ߬௜ is ܤ௜/ݏ௕, and ݐ௜,௝
௦ െ ௜,௝ݐ

௛ .௕ݏ/௜ܤ ≥
For any task ߬௜, its computation amount ܥ௜consists of two

parts: ܿܥ௜ and ݊ܥ௜, where ܿܥ௜ is the total computation amount
of its critical sections, i.e., ܿܥ௜ ൌ ∑ ೔ࣴא௜,௝|௭೔,ೕݖ| , and݊ܥ௜ is the
computation amount of its non-critical part, i.e., ݊ܥ௜ ൌ ௜ܥ െ
 .௜ܥܿ

When the actual blocking time is less than the worst-case
blocking time, we get additional ܤ௜/ݏ௕ െ ሺݐ௜,௝

௦ െ ௜,௝ݐ
௛ ሻ time

for executing the task instance ߬௜,௝ .This additional time is
adopt to slow down the execution speed from ݏ௕ to ݏ௜,௝

כ so
that energy consumption could be reduced. We called this
method as blocking-time stealing.

According to the BTS-SRP, the execution time of a task
instance ߬௜,௝ is ݊ܥ௜/ݏ௜,௝

כ + ௕ݏ/௜ܥܿ . For ensuring the

201

schedulability of all tasks, ߬௜,௝ 's execution time cannot
exceed ܥ௜/ݏ௕ ൅ ௕ݏ/௜ܤ െ ሺݐ௜,௝

௦ െ ௜,௝ݐ
௛ ሻ . Hence, the processor

speed ݏ௜,௝
כ can be calculated as follows:

௜,௝ݏ
כ ൌ ݔܽ݉

௦ೖא ௌ
 ሼݏ௞ :

௜ܥ௕݊ݏ

௜ܤ െ ௜,௝ݐ௕ሺݏ
௦ െ ௜,௝ݐ

௛ ሻ ൅ ௜ܥ݊
൑ ௞ሽ ሺ3ሻݏ

IV. PERFORMANCE EVALUATION
We have implemented a simulation of a DVS

environment to schedule different task workloads. In our
simulation, the speeds of the processor are from 0.05 to 1
increased by 0.05. The performance of our proposed BTS-
SRP is compared with the following approaches: uniform
slowdown with frequency inheritance (USFI) [7],
independent task set transformation (ITST), BTS-SRP
without blocking-time stealing (BS) and maximum speed
(MS). Where ITST transforms the given tasks into
independent tasks and uses the EDF algorithm to schedule
the transformed tasks. The BS schedules tasks to be
executed at the base processor speed ௕ݏ . The MS is a
baseline approach which schedules tasks to be executed at
the ݏ௠௔௫under the EDF and the SRP.

A. Performance Metrics and Data Set
The primary performance metric of interest is the energy

consumption of tasks whichis the sum of the energy
consumption of every task instance executed during the
simulation time. We assume that the power consumption
function of processor speeds be ܲܥሺݏ௜ሻ ൌ ሺ0.08 ൅
௜ݒ1.52

ଷሻWatts [14]. We set the supply voltage ݒ௜ ൌ ௜ݏ כ 10,
௜ݏ׊ א ܵ . The energy consumption in time interval ሾݐଵ, ଶሻݐ
can be obtained by ׬ ௧మݐ݀ ሻሻݐሺݏሺܥܲ

௧భ
.

For generating feasible task sets, we set the utilization of
tasks from 0.2 to 1 with an increment of0.1. The period of a
task was selected form 100 to2000by normal distribution.
The worst-case computation amount of task was selected
form 10 to 300 by normal distribution. The number of shared
multiunit resources is 5 to 10 and the number of units
foreach resource is 1 to 5.

Figure 1. Normalized energy consumption.

For each task ߬௜, we also set the resource usage ratio be
0.3, which is defined as ܿܥ௜/ܥ௜ . The simulation time is
100,000 and over 10 task sets per utilization factor were
tested in the simulation and the results are averaged.

B. Simulation Results
Figure 1 shows the experimental results of different

approaches. The energy consumption of the USFI, ITST, BS,
and our proposed BTS-SRP are normalized with respect to
the baseline approach, i.e., MS (The tasks are always
executed atݏ௠௔௫.). Figure 1 shows that our proposed BTS-
SRP outperforms all others.The performance ranking is MS,
ITST, BS, USFI, and BTS-SRP (from the worst to the best).
The performance of the MS is the worst because tasks are
executed at ݏ௠௔௫. The ITST and the BS schedule tasks to be
executed at the speed minୱೕ א ௌሼ ݏ௝ | ∑ ஼ᇱ೔

஽೔
൑௡

௜ୀଵ ௝ሽ and the baseݏ
processor speedݏ௕ , respectively. The BS outperforms the
ITST because the ITST transforms dependent tasks into
independent tasks by adding the worst-case blocking time to
tasks' computation. In other words, it assumes the blocking
will be occurred for every task instances. When the actual
blocking time is less than the worst-case blocking time, the
BS outperforms the ITST. The performance of the USFI is
better than others excepts our proposed BTS-SRP. It is
because the blocking-time stealing method is employed by
the BTS-SRP so that more energy saving could be achieved.

V. CONCLUSION
In this paper, we propose an approach, called blocking-

time stealing stack resource policy (BTS-SRP), to schedule
dependent real-time tasks and to assign proper processor
speed for their executions on a non-ideal DVS processor.
The blocking-time stealing method can dynamically adjust
the processor speed such that more energy saving could be
obtained. The capabilities of our proposed approach were
evaluated by experiments. It is shown that the BTS-SRP
outperforms others.

ACKNOWLEDGMENT
This paper is supported in part by a research grant from

the National Science Council (NSC) of Taiwan under the
grant number NSC-101-2221-E-251-005.

REFERENCES
[1] J.-J. Chen and C.-F. Kuo, “Energy-Efficient Scheduling for Real-

Time Systems on Dynamic Voltage Scaling Platforms,” in
Proceedings of the 13th IEEE RTCSA, 2007.

[2] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance
Protocols: an Approach to Real-Time Synchronization,” IEEE
Transactions on Computers, vol. 39, no. 9, pp. 1175–1185, Sepember
1990.

[3] T. P. Baker, “A Stack-Based Resource Allocation Policy for Real-
Time Processes,” in Proceedings of the 11th IEEE RTSS, December
4-7 1990, pp. 191-200.

[4] F. Zhang and S. T. Chanson, “Blocking-Aware Processor Voltage
Scheduling for Real-Time Tasks,” ACM Transactions on Embedded
Computing Systems, vol. 3, no. 2, pp. 307–335, 2004.

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 E
ng

er
gy

 C
on

su
m

pt
io

n

Utilization

USFI ITST BS MS BTS-SRP

202

[5] J. Lee, K. Koh, and C.-g. Lee, “Multi-Speed DVS Algorithms for
Periodic Tasks with Non-Preemptible Sections,” in Proceedings of the
13th IEEE RTCSA, 2007, pp. 459–468.

[6] A. M. Elewi, M. H. A. Awadalla, and M. I. Eladawy, “Energy-
Efficient Multi-Speed Algorithm for Scheduling Dependent Real-
Time Tasks,” in Proceedings of the ICCES, November 2008, pp.
237–242.

[7] R. Jejurikar and R. Gupta, “Energy Aware Task Scheduling with Task
Synchronization for Embedded Real Time Systems,” IEEE
Transactions on Computer Aided Design of Integrated Circuits and
Systems, vol. 25, no. 6, pp. 1024–1037, 2006.

[8] Y.-W. Pan, “Energy-Efficient Task Synchronization for Real-Time
Systems on Dynamic Voltage Scaling Platforms,” Master thesis,
National Pingtung Institute of Commerce, Pingtung, Taiwan, 2009.

[9] J. Wu, Y.-W. Pan, and K.-L. Kao, “Energy-Efficient DVS Scheduling
for Real-Time Tasks,” in Proceedings of the 2010 International

Conference on Advanced Information Technologies (AIT 2010),
April 23-24 2010, Taichung, Taiwan.

[10] K.-L. Kao, “DVS Scheduling of Real-Time Tasks with Abortable
Critical Sections,” Master thesis, National Pingtung Institute of
Commerce, Pingtung, Taiwan, 2011.

[11] J. Wu, “A Prediction-Based Approach for Energy-Efficient DVS
Scheduling of Dependent Real-Time Tasks,” in Proceedings of the
17th IEEE RTAS, April 11-14 2011.

[12] C. L. Liu and J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment,” Journal of the
Association for Computing Machinery (JACM), vol. 20, no. 1, pp.
46–61, January 1973.

[13] M. Chen and K. Lin, “Dynamic Priority Ceilings: A Concurrency
Control Protocol for Real-Time Systems,” Real Time Systems Journal,
vol. 2, no. 1, pp. 325–346, 1990.

[14] Intel, Intel XScale Core Developer’s Manual, 2004.

203

