

Malicious Website Detection Based on Honeypot Systems

Tung-Ming Koo, Hung-Chang Chang, Ya-Ting Hsu
Department of Information Management

National Yunlin University of Science & Technology
Douliou, Yunlin, Taiwan, R.O.C.

e-mail: {koo, g9823811, g9723742}@yuntech.edu.tw

Huey-Yeh Lin
Department of Finance

National Formosa University
Huwei, Yunlin, Taiwan, R.O.C.

e-mail: linhytw@nfu.edu.tw

Abstract—In the Internet age, every computer user is likely to
inadvertently encounter highly contagious viruses. Over the
past several years, a new type of web attack has spread across
the web, that is, when a client connects to a malicious remote
server, the server responds to the request while simultaneously
transporting malicious programs to the client’s computer,
thereby launching a drive-by download attack. If the attack is
successful, malicious servers can control and execute any
program from the client’s computer. Malicious websites
frequently harbor obfuscation mechanisms to evade signature-
based detection systems. These obfuscators have become
increasingly sophisticated that they have begun to invade
multimedia files (JPG, Flash, and PDF). Under such
circumstances, unless specific behaviors are triggered by
malicious webpages, identifying programs with malicious
intent by merely analyzing web content is extremely difficult,
not to mention the formidable quantity of webpages and the
ever changing attack techniques. Based on a client-side
honeypot system, this study proposes a model for determining
whether a webpage is malicious. We present a technique to
improve the accuracy of malicious web detection. First, static
content analysis is performed to accelerate the detection,
followed by actual browsing on webpages for in-depth probing
using the client-side honeypot system. Using this method,
user’s security is protected when surfing the Internet.

Keywords- Honeypot; malicious website; drive-by download

I. INTRODUCTION
A web browser is indispensable tool for browsing online

content. However, a security report by IBM published in the
first half of 2009 [10] indicated that web browser
vulnerabilities have been the most exploited over the past
few years. Regarding the range of operating systems, the
Microsoft operating systems family was ranked first place
for the severity and incidence of system breaches.
Furthermore, Microsoft has the largest user base. Therefore,
this study uses Microsoft operating systems to build the
experimental environment.

When a client connects to a malicious remote server, the
server transfers malicious programs to the client’s computer.
Then, when the user sends a request to the malicious server,
the server responds to the request while simultaneously
launching a drive-by download attack[17]. If the download is
completed successfully, malicious servers can execute any
programs on the client’s computer. According to statistics by
the Symantec Corporation [5][17], more than 18 million
drive-by downloads were enforced in 2008.

Several reasons can be attributed to why malicious
attacks use the web as the medium for attacking. First, the
HTTP protocol is very easy to configure and use. Second,
using a generic communication protocol is inconspicuous.
Because most firewalls permit port 80 of the HTTP protocol
to pass, they are often useless to withstand such attacks,
allowing attacking packets to invade the system effortlessly.
Because interconnectivity has become an indispensable part
of everyday life, terrorists believe that attacking through the
web is an ideal option because of its maximum benefits and
minimum risks.

Malicious websites frequently use obfuscation techniques
to evade detection; these obfuscations have become
increasingly sophisticated, even extending to multimedia
documents (JPG, Flash, and PDF). Under these
circumstances, unless specific behaviors are triggered by
browsing malicious webpages, identifying programs with
malicious intentions by analyzing only the content is
extremely difficult, not including the daunting quantity of
webpages and constantly changing attacking techniques.
Thus, this study first analyzes the static content of webpages
to accelerate the analyzing process; then, we use a honeypot
system to browse webpages for in-depth probing. The
analysis outcome is used to determine whether webpages are
benign or malicious automatically.

The followings are the main objectives of this technique:
 Active detection of malicious websites
 Automated malicious website analysis
 Establish a protective mechanism

II. LITERATURE REVIEW
Traditional attacks are launched from the server-side, that

is, the attack and penetration are aimed at the server service
system. Nowadays, attacks have been shifting to the client-
side, that is, when a client-side application (browser)
interacts with malicious servers, the vulnerabilities of the
application are exploited for malicious purposes, or the
client-side is induced to execute malicious programs. Any
client/server architecture can lead to this type of attack (Web,
FTP, and Mail), which is difficult to detect with the current
firewall, invasion detection, and proxy-based defense
systems.

Drive-by downloads[1][17], also called “forced
downloads” or “pass-by downloads,” are a new type of
client-side attack. When a user visits a webpage containing
malicious scripts, the malicious programs are downloaded to
the user’s computer without the consent of the user. Even

2nd International Conference on Advances in Computer Science and Engineering (CSE 2013)

© 2013. The authors - Published by Atlantis Press 76

legitimate websites can carry drive-by downloads simply
because they were compromised and injected with malicious
scripts. If the web browser or other software is not patched or
updated regularly, the user may become infected.

The process of drive-by downloads are as follows:
1. Attackers seize control of legitimate web servers
2. Web browsing by users
3. Drive-by downloads
4. Redirecting to malicious websites
5. Malicious website attacking the user
Numerous studies have investigated malicious webpage

detection and protection in recent years. Static analysis
examines whether the program code or original documents
carry the defined signatures or patterns without executing
these programs. Dynamic analysis refers to the detection
technique that uses behavioral patterns to simulate the
browsing environment of users by loading an actual webpage
into the browser and determining whether the browser
downloads or executes unwanted scripts.

A honeypot is a type of information system resource that
can be used without authorization or illegally. Thus,
honeypots are primarily deployed as targets to be detected,
attacked, or harmed by exploitive code. The basic
assumption is that because honeypots simulate non-existent
systems or services, a person attempting to reach the non-
existent systems or services must have bad intentions.

Most honeypots are server-side systems. They are
configured as vulnerable hosts providing specific services to
ensure they are detected and assaulted by hackers and
damaged by malware. Honeypots are attacked passively and
do not act as a trapping system without first being attacked.

Over the past several years, with the attack targets
shifting to the client side, Spizner developed a new client
honeypot type [4]. This honeypot differs from the traditional
server honeypot in that its active sniffing creates interactions
with the target hosts, and it is designed to actively detect
offensive behaviors from malicious hosts. By contrast, server
honeypots cannot sniff actively. Therefore, a client honeypot
is used to actively detect whether a web service provided on
the Internet contains malicious behaviors.

Microsoft previously conducted HoneyMonkey, a project
designed to analyze the existence of malware in a particular
website [9]. Run on a Windows XP operating system,
HoneyMonkey sends queries to webpages and waits to
determine whether they launch attacks against the Windows
system. Additionally, HoneyMonkey records invasions by
hackers or attacking behaviors by worms in an attempt to
protect the Windows system from attack. First,
HoneyMonkey runs a Strider Flight Data Recorder (FDR)
program to monitor every file in the directory and the read-
write behaviors of the system registry. Then, it launches a
web browser to view a webpage on a certain website and
waits several minutes on every page it visits. Meanwhile,
HoneyMonkey does not accept any requests from the dialog
windows requesting installation. When browsing the
webpages, all executable files not established in the
temporary directory are recorded by the FDR. Using this
approach, HoneyMonkey determines whether a website
contains malicious code. However, this approach only

assesses through manual work and only analyzes specific
websites.

Honeyclient is a highly interactive web-based honeypot
developed by Wang in 2004 [12]; it was the first open source
client honeypot written using Perl. As an event-based
application, Honeyclient can detect attacks at the client side
by monitoring specific directories and the system registry.
Using the password hash MD5, Honeyclient compares the
directories and registry after interacting with the server.
When the checksum differs from the original, it is considered
malicious. However, this approach is time-consuming and
has a high false positive rate.

In 2008, Seifert proposed Capture [3][13], a highly
interactive client honeypot with full functionalities. This
honeypot uses a virtual machine to simulate the system
environment at user’s end. By controlling the browser, it
detects the remote target hosts and observes changes in the
system status. Modifications to the system status may
suggest an abnormality. Although this approach is precise,
detection is time-consuming.

III. RESEARCH METHODS
Thousands of drive-by downloads occur on mainstream

websites daily; the users of these websites are infected or
attacked at an astonishing rate. Unfortunately, numerous
users remain unaware of these attacks. Thus, this study
investigates using static content analysis and dynamic
behavior analysis to determine whether a webpage has
malicious or abnormal intentions. We employ semantic-
based static content analysis and the behavior capturing
technique proposed by Seifert et al. [2][14][15], and attempt
to improve these methods considering the network
characteristics.

Currently, most malicious webpages are assessed using
static analysis or signature-based value. Despite the
provision of rapid detection and judgment, these methods
cannot resist unknown attack variations. Although heuristics
and behavior-based detection techniques can prevent
unknown attacks, they are disadvantaged by being time-
consuming. Conventional antivirus software, firewalls, and
invasion detection programs are totally useless when
confronted with the flexibly adapting and swiftly concealed
attacking tactics. In response, this study proposes a detection
and defense model that combines static content analysis and
dynamic behavior analysis to develop an actively detecting,
dynamically analyzing, and rapidly defending mechanism.

A. System Architecture
As shown in Fig. 1, the system architecture of this study

comprises four modules, that is, a proxy module, source code
analysis module, behavior recording module, and behavior
analysis module, as Fig. 2. The webpage analysis portion
adopts a hybrid system, where static content analysis is used
to improve detection efficiency, and dynamic behavior
analysis is used to ensure the extensiveness of the detection.
The source code analysis module is part of the static content
analysis stage; whereas the record behavior module and the
behavior analysis module are part of the dynamic behavior
analysis stage.

77

Figure 1. System architecture

B. System Modules
(1) Proxy module：The proxy module is primarily

responsible for protecting the clients of the internal network.
This module filters the webpages accessed by the clients,
records the URLs, saves the webpages, and then sends a
copy of this page to the static analysis module. This module
waits for the analysis results before deciding whether to
transmit the webpage to the client side. The results of this
analysis are recorded to enable the server to respond
immediately if the same webpage is requested again.

Figure 2. Flowchart of the proxy server module

The webpage detection cycle adopts a mechanism similar
to the transparent proxy (TP). The difference between a TP
and other proxy servers is that, when using a TP, no browser
settings are required. That is, the clients can redirect any
HTTP connections to the proxy server without changing any
settings. The rules used in this study to determine the validity
of the detection results are as follows:

1. If the detection time on a webpage exceeds the life
cycle of that page, the detection is expired;
otherwise, it is a valid detection. The life cycle of

the webpage refers to the parameter set by the web
server.

2. If the detection time on a webpage exceeds the
time set for the maximum parameter, the detection
is expired.

3. If the detection time on a webpage exceeds the last
modified time factor of the document, the detection
is expired; otherwise, it is a valid detection. The
last modified time factor of the document refers to
the time the page is cached minus the last modified
time the webpage was cached on the web server *
the percentage set.

4. If the detection time on a webpage is shorter than
the time specified by the minimum parameter, the
detection is valid.

5. If none of these conditions are met, the detection is
expired.

(2) Source Code Analysis Module：This module uses
static content analysis to test the original HTML syntax
according to identified pattern values. This module is based
on abnormal semantics analysis. First, regarding the
obfuscation features, the obfuscation techniques in the
webpage script are recorded for further identification and
pattern matching of the URL. Generally, the URL does not
contain numerous bytes; thus, the speed of identification can
be improved. Next, the static pages are filtered. The purely
static webpages free of scripts and automatic link tags are
filtered first to accelerate the detection rate and because they
are considered harmless webpages. Many web application
attacks or leakage attacks are conducted by exploiting the
script syntax, or through automatic links that connect the
user to malicious image files, reducing the probability of
detection. Finally, the source code of the webpage is
examined to determine whether abnormal semantics are
present. This determination requires the source code of the
page. After the three major assessments, if the page cannot
be identified as either good or malicious, the URL of the
webpage is sent to the behavior recording module for
dynamic behavior analysis.

This module comprises four submodules, which are
described as follows:

1. Obfuscation signatures: This submodule primarily
records the webpage scripts that contain obfuscating features
for later analysis.

2. URL Signature: Filters the malicious semantics using
the suspicious URL signatures.

3. Static Webpages Assesses: Whether the webpages
contain syntax that performs syntax calls (including
JavaScript, VB Script, etc). Numerous web application
attacks and system breaches are accomplished by exploiting
the syntactic scripts. The most common method to determine
whether a webpage contains provocative scripts is to check
whether any <script> tag is in use. Another screening
criterion is whether it contains automated links. Automated
links refer to when the webpage links to other webpages or
accesses information from other webpages without the user’s
consent, or the user is unaware of the linkage. Hackers may
embed malicious URLs as automatic linking tags in the
webpages, and the tags do not necessarily comply with the

78

syntax. A number of HTML tags are exploited by hackers to
create automatic linking tags, such as Iframe, Meta, Img,
Embed, Xml, Style, Object, and Applet. The criterion for the
final judgment is whether it can call other scripts or contains
tags with automated links. If neither is true, then it can be
judged a normal static webpage. This step identifies portions
of the normal webpages first to accelerate detection.
However, if either criterion is true, or both are true, then the
webpage can be judged suspicious and should undergo
further examination in the following phases.

4. Signatures in the source code. Following static content
analysis, if a webpage is identified to have any of the
malicious signatures, it can be regarded as a malicious
webpage immediately. If the signatures are not sufficiently
decisive enough for judgment, the URL can be sent to the
behavior recording module for behavioral analysis. Because
behavioral analysis is relatively time-consuming, the system
responds to the user first, notifying them that the webpage is
suspicious; however, it is still accessible if the user insists.

(3) Behavior Recording Module：This module primarily
operates on Capture-BAT, a client honeypot [4] installed on
a virtual machine. This module browses webpages in the
simulated Windows client-side environment and records all
events triggered when viewing the webpages, including
monitoring the I/O operations of the file system, changes in
the registry, and creation and destruction of processes. Then,
the regular events that are triggered by the operating system
or the browser itself are excluded and the recorded document
is sent to the behavior analysis module for assessment.

This module comprises three submodules, which are
described as follows:

1. Simulated browsing
Each detection starts by visiting a website in a clean

environment to ensure the changes in the system are caused
by the events that occur when browsing the webpages.
Before proceeding to visit the next website, the simulated
environment is restored to its initial clean status.

2. Recording the triggered events
API hooking is used to monitor changes of system status,

including the following:
 The I/O operations of the file system. Monitor the

reading and writing of all the documents and record
the time, type of action (Read, Write), triggering
program, and the full path of the documents.

 Changes in the registry. Monitor modifications to the
Windows system configuration and record the time,
type of action (setValKey, DeleteValKey…, etc.),
triggering programs, and full path.

 Creation and closing of processes. Monitor the
creation and destruction of processes, excluding the
programs already running before browsing was
initiated. Record the time, type (Created, Destruction),
triggering programs, and the full file path.

3. Excluding normal events
Under normal conditions, events occur constantly in the

system; therefore, the normal events must be excluded to
prevent false positives. Exclusion lists are set for the file
system, registry, and processes. The plus sign denotes
normal events that should be excluded, and the minus sign

denotes abnormal events that should not be excluded. In
Table 1, the data in the second and third row indicate that the
event writing C:\WIN\ can be excluded, whereas the event
writing C:\WIN\Sys32 should not be excluded.

Table 1. Example of the excluding list for the file system

Excluding Type Program Name Category of Document
+ Read .* .*
+ Write .* C:\WIN\
- Write .* C:\WIN\Sys32\
+ Write C:\\Browser.exe C:\Cache\

After this module, the document recording the events
triggered when viewing the webpage is transmitted to the
behavior analysis module for analysis.

(4) Behavior Analysis Module：Analyzes various types
of events according to the records of webpage browsing
using the client honeypot. In this module, the criteria for
judgment are based on the impact or effects each event has
on the system.

In this module, various system changes resulting from the
events triggered when browsing webpages are analyzed and
scored according to the severity of damage. This module
analyzes three major events.

1. Analysis of file I/O events. Discriminating if there are
file I/O operations according to the recorded
document. If a document is accessed without
authorization, it is considered malicious behavior.
Malicious signatures may include modifying
documents under C:/windows/sys32/ and writing to
documents that contain macros for automatic
execution.

2. Analysis of registry events. After installation in the
system, all applications are registered to the registry to
ensure the usability of the application. If a webpage
modifies the registry, it is highly likely it contains a
hazardous link. The link is then analyzed by the
system according to the modifications it made to
determine whether it is a malicious link.

3. Analysis of process events. When executing a normal
application, the processes of the application can be
observed clearly. Information such as the CPU status
and memory usage can be observed from the system
process, and which application initialized a particular
process is also clearly displayed. When a connection
to the webpage is established, a review of the process
record can reveal the occurrence of abnormal
disconnection in the programs, shifts from a regular
process to a resident process, or whether processes are
concealed using Rootkit, thereby determining whether
the connection is a malicious one.

Finally, if any malicious signatures are identified through
analyses of the three types of events, the webpage can be
considered a malicious one.

IV. SYSTEM IMPLEMENTATION AND EXPERIMENTATION
For the static analysis process, we used a self-developed

JAVA program to process the signatures with regular
expressions to accelerate the matching speed. For the

79

dynamic analysis process, we used a honeypot system named
Capture-HPC [5], where the excluding list and conditional
constraints are incorporated to achieve optimal performance.
The behavior recording module was implemented under a
VM environment, which sequentially simulates website
browsing according to the order of the URLs requiring
detection. The browsing history was recorded fully, and the
malicious packets in the network traffic were collected using
Wireshark.

A. Sample of the Experiment
During the four-month period, approximately 1,000

URLs were collected, of which, 477 were malicious and 598
were good. The majority of the benign URLs were obtained
from the top 500 global websites [8]; a number of them were
sourced from a list of secure websites known to web crawlers
by searching using Google [11]. To ensure consistency of the
data, all the sample webpages were obtained using Flashget
and archived after the validity of the URLs was confirmed.
Subsequent experiments were conducted based on these
sample webpages. All samples were scanned using Avira
AntiVir personal edition. No viruses were found in the
benign sample, whereas in the malicious sample, 213 virus
warnings were provided and 52 varieties of virus were found,
as shown in Table 2.

Table 2. Virus codes contained in the sample

BDS/Backdoor.Gen back-door
program TR/Agent.GY.965 Trojan

BDS/IRCNite.HF back-door program TR/Click.Agent.ldb Trojan
EXP/Pdfka.jgw exploit TR/Clicker.nhi Trojan
EXP/Pidief.bwf exploit TR/Crypt.CFI.Gen Trojan
EXP/Pidief.dbw.7 exploit TR/Crypt.FKM.Gen Trojan
HTML/Dldr.A.aqq.9 HTML script
virus

TR/Crypt.XPACK.Gen
Trojan

HTML/ExpKit.Gen HTML script
virus

TR/Dldr.Agent.diau.6
Trojan

HTML/FakeAV.down HTML script
virus TR/Dldr.Agent.fig.3 Trojan

HTML/IFrame.aaa HTML script virus TR/Drop.Mul.1 Trojan
HTML/IFrame.akb.1 HTML script
virus TR/Drop.Raysun.A Trojan

HTML/Infected.WebPage.Gen HTML
script virus TR/Dropper.Gen Trojan

HTML/Script.INM HTML script virus TR/FakeRean.A.580 Trojan
JAVA/ClassLoade.I.1 Java virus TR/FraudPack.awch Trojan
JS/Agent.6795 JavaScript virus TR/Gendal.122880.H Trojan
JS/Cosmu.A JavaScript virus TR/Hijacker.Gen Trojan
JS/Dldr.Agent.15067 JavaScript virus TR/Pakes.BR.1 Trojan
JS/Dldr.Agent.fig.2 JavaScript virus TR/PCK.Tdss.Z.4764 Trojan
JS/Pegel.45700 JavaScript virus TR/PCK.Tdss.Z.4781 Trojan

JS/Redirect.9200 JavaScript virus TR/Ransom.XBlocker.abh
Trojan

JS/Redirector.k.795 JavaScript virus TR/Scar.cdxw Trojan
WORM/IrcBot.96396 worm TR/Siscos.MZ.3 Trojan
WORM/IrcBot.96401.1 worm TR/Spy.Agent.bfnn Trojan

TR/Agent.11776.U Trojan TR/Spy.SpyEyes.GA.2
Trojan

TR/Agent.AO.1233 Trojan TR/Spy.ZBot.afng.3 Trojan
TR/Agent.AO.1314 Trojan TR/Swisyn.aedm Trojan
TR/Agent.AO.1315 Trojan TR/TDss.bdfm Trojan

B. System Experiments
The system experiments were conducted in two forms,

and the performance and accuracy of each experiment was
compared.

a. Static analysis alone: All samples were analyzed
using only static analysis, and the samples without malicious
signatures were considered harmless.

b. Dynamic analysis alone: All samples underwent
dynamic analysis, and the outcomes of the interaction were
directly analyzed.

(1) Static analysis ： All samples without malicious
signatures were considered harmless. The URL signatures
are then compared because URL addresses do not contain
numerous bytes, therefore, the assessment can be accelerated.
Subsequently, during the static webpage filtering process,
purely static webpages with no scripts or tags of automated
links are filtered first; most are immediately regarded as
harmless webpages, which accelerates the detection process.
The reason numerous web application attacks or leakage
attacks are conducted by exploiting the script syntax, or
through automatic links that connect to malicious image files,
is to reduce the probability of detection.

Finally, the source code of the webpage is examined to
determine whether abnormal semantics are present; this
determination requires the source code of the page. The
number of signatures in the samples is shown in Table 3.
Among these signatures, the most prominent are the URL
signatures. All items in the field “mismatch of URL
document type and content” are clearly of a deceitful nature.
Altogether, 147 instances were found in the malicious
sample, whereas no instances were found in the benign
sample. Similarly, instances of “syntax instructions
following the URL” were only found in the malicious sample.
These statistics enable the discrimination of malicious
sample simply using static analysis without detecting the
source code, saving a significant amount of time. Regarding
the source code signature, obvious outcomes were observed.
Signatures under the three headings “using base 64
decryption,” “keyword transcoding or splitting,” and “system
variable alteration” only appeared in the malicious sample;
none appeared in the benign sample.

Table 3. Instances of signatures from static analysis

 Static signatures
Malicious

477
instances

Benign
598

instances
Obfuscation
signatures Encrypted 207 160

URL
signatures

Syntax instructions following
URL 21 0

Mismatch of URL document
type and content 147 0

Static
webpage

Containing syntax that can call
scripts 267 544

Containing tags of automatic
linking 273 548

Source
Code

Signature

Redirection to different domains
without warning 78 26

Hidden page components 114 96

80

 Static signatures
Malicious

477
instances

Benign
598

instances
Only one line in the js document 129 412

Using base 64 decryption 9 0
Keyword transcoding or splitting 198 0

System variable alteration 6 0
Containing advertising signatures 45 264

This study sets the four signatures “mismatch of URL
document type and content,” “redirection to different
domains without warning,” “keyword transcoding or
splitting,” and “system variable alteration” as definite
malicious signatures because all four signatures feature
malicious deception and three only appeared in the malicious
sample. “Redirection to different domains without warning”
also appeared 26 times in the benign sample, mainly because
of the mutual URL forwarding between the enterprise
website (such as Microsoft) and its affiliated services (such
as Hotmail). Because involuntary user behavior or behaviors
occurring without user awareness was defined as malicious
behavior in this study, presenting a few misjudgments during
detection is acceptable. The analytic result of static analysis
alone is shown in Table 4. The results shows that 122 (96 +
26) false positives occurred, with an accuracy rate of 88.65%.
The total time consumed was approximately 27 min.

Table 4. Number of judgments for static analysis

Result of the
judgment

Malicious sample
477 entries

Benign sample 598
entries

 Malicious 381 26
Benign 96 572

(2) Dynamic analysis alone ： The outcome after
interaction is analyzed directly. Capture-HPC, a client
honeypot system, was used to perform the analysis. The
client honeypot was installed in the virtual machine, which
browses webpages by simulating the environment of a
Windows client. All events triggered during the browsing
were recorded, including the I/O operations of the file system,
changes in the registry, and creation and destruction of
processes. Finally, the normal events that were triggered by
the operating system or the browser were excluded, and the
recorded documents were sent to the behavior analysis
module for assessment.

Table 5. Abnormal events in the file system exclusion list

Access File Path Access File Path
Write .+\.bat Write .+\.scr
Write .+\.cmd Write .+\.wsc
Write .+\.exe Write .+\.wsf
Write .+\.inf Write .+\.wsh
Write .+\.lnk Write .+\.vb
Write .+\.msi Write .+\.com
Write .+\.msp Write .+\.pdf
Write .+\.pif Write C:\\WINDOWS\\win.ini
Write .+\.reg Write C:\\WINDOWS\\Tasks\\.+
Write .+\.sct Write C:\\Documents and Settings\\.+

\\Start Menu\\Programs\\Startup.+ Write .+\.shs

Exclusion lists were set for the file system, registry, and
processes. Besides the normal events that were excluded, the
abnormal events that should not be excluded were reserved.

Previous studies [2] have demonstrated that although
dynamic analysis does not yield false positives, it produces
false negatives because a false negative can occur if no
malicious behavior occurs at the time of detection. This
study uses an exclusion list and conditional constraints to
reiterate the detection to ensure false negatives are avoided.
Table 6 shows the results of purely dynamic analysis, with
an accuracy rate of 100%. The total runtime was
approximately 27 h and 55 min.

Table 6. Decisions for dynamic analysis only detection

Result Malicious 477 entries Benign 598 entries
Malicious 477 0

Benign 0 598

V. CONCLUSIONS
This study proposed a mechanism for malicious web

detection. According to the data collected in the experiments,
static analysis only has relatively low accuracy and dynamic
analysis is time-and resource consuming.

Blind spots still exist in the identification of malicious
websites. Currently, static analysis relies primarily on
keywords to perform detection; however, these keywords
may be altered afterward, preventing the system from
identifying them correctly. Furthermore, after the current
static analysis of this study, most benign webpages were
regarded as suspicious and their behavior malicious; thus, the
detection time was subsequently prolonged. The techniques
for detecting benign webpages maybe improved in the future
to reduce the detection time.

ACKNOWLEDGMENT
This research is partially supported by Grant No. NSC

101-2221-E-224-062 from the National Science Council of
the Republic of China.

REFERENCES
[1] Alexa Top 500 Global Sites. [cited 2013/4/20]; Available from:

http://www.alexa.com/topsites.
[2] Christodorescu, M., et al., Semantics-Aware Malware Detection, in

Proceedings of the 2005 IEEE Symposium on Security and Privacy.
2005, IEEE Computer Society. p. 32-46.

[3] Christodorescu, M., et al., A semantics-based approach to malware
detection. ACM Trans. Program. Lang. Syst., 2008. 30(5): p. 1-54.

[4] Capture-BAT. [cited 2013/4/20]; Available from:
https://www.honeynet.org/node/315.

[5] Capture-HPC. [cited 2013/4/20]; Available from:
https://projects.honeynet.org/capture-hpc.

[6] Google. [cited 2013/4/20]; Available from: http://www.google.com.
[7] Honeyclient Project [cited 2013/4/20]; Available from:

http://www.honeyclient.org/trac.
[8] Honeyd. [cited 2013/4/20]; Available from: http://www.honeyd.org/.
[9] HoneyMonkey [cited 2013/4/20]; Available from:

http://research.microsoft.com/en-
us/um/redmond/projects/strider/honeymonkey/.

[10] IBM, 2009 Mid-Year Trend and Risk Report. 2009.

81

[11] Malware Block List. [cited 2013/4/20]; Available from:
http://www.malware.com.br/.

[12] Malware Domain List. [cited 2013/4/20]; Available from:
http://www.malwaredomainlist.com/.

[13] Seifert, C., et al., Drive-by-downloads. 2008.
[14] Seifert, C., et al., Capture - A behavioral analysis tool for applications

and documents. Digital Investigation, 2007. 4(Supplement 1): p. 23-
30.

[15] 18. Seifert, C., I. Welch, and P. Komisarczuk. Identification of
Malicious Web Pages with Static Heuristics. in Telecommunication
Networks and Applications Conference, 2008. ATNAC 2008.
Australasian. 2008.

[16] Symantec, Web Based Attacks. 2009.
[17] Wikipedia. Drive-by download. [cited 2013/4/20]; Available from:

http://en.wikipedia.org/wiki/Drive-by_download.

82

