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Abstract—In order to improve the quality of noise signals 
reconstruction method, an algorithm of adaptive dual gradient 
projection for sparse reconstruction of compressed sensing 
theory is proposed. In ADGPSR algorithm, the pursuit 
direction is updated in two conjudate directions,  the better 
original signals estimated value is computed by conjudate 
coefficient. Thus the reconstruction quality is improved. 
Experiment results show that, compared with the GPSR 
algorithm, the ADGPSR algorithm improves the signals 
reconstruction accuracy, improves PSNR of reconstruction 
signals, and exhibits higher robustness under different noise 
intensities. 

Keywords- signal processing, gradient projection, compressed 
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I.  INTRODUCTION  

The Nyquist sampling theorem of information theory is 
the measurement rules of signal sample, which is proposed 
by the American Electrical Engineer H. Nyquist. In 1928 the 
founder of information theory C.E. Shannon proves the 
Shannon sample theory and cites it as a theorem[1,2]. The 
Shannon sample theory occupy all areas of signal acquisition, 
image acquisition, processing, storage, transmission,  etc.  
The  Shannon sample theory works in the way of that the 
sampling rate not less than two times the highest frequency[3-

5]. 
With the development of information technology, there 

are two question of the Shannon sample theory. The first 
question is that the data acquisition and processing is 
difficult in some conditions, such as the ultra-wideband 
communication system, UWB signal processing, THz 
imaging, nuclear magnetic resonance, space exploration, and 
so on. Second question is that the data storage and 
transmission n a significant degree of waste of resources[6-8]. 

In recent years, the compressed sensing theory proposed 
by Candes, Romberg, et al (Compressed sensing) to 
overcome the shortcoming of Nyquist sampling theory[9,10], 
the basic idea is that, sampling the signals with a lower 
sample rate, rather than the higher sample rate, then 
compressing the sampled signal. The basic of this theory is 
the sparse signals can be compressed. The theory can use far 
less than the Nyquist sampling frequency of data sampling, 
and still be able to accurately restore the signal [11,12].The 
outstanding advantages of compressed sensing theory are 
that,  for those signals with a sparse representation, the 

theory combine separately data acquisition with  data 
compression into one process[13,14]. Thus the signal 
acquisition on the acquisition of equipment is reduced, 
especially for high resolution acquisition signals, the signal 
acquisition time and storage space greatly have been reduced. 
the cost of signal acquisition and processing are saved[15,16]. 

Point to the reconstruction quality of  GPSR algorithm,  
we propose an ADGPSR algorithm (adaptive dual gradient 
projection for sparse reconstruction). In ADGPSR when 
computing the gradient projection directions,  we compute 
two conjugate searching directions. The signals 
reconstruction quality of ADGPSR is higher than GPSR 
algorithm, At the same time, the ADGPSR algorithm  
improves  the SPNR of reconstruction image and exhibits 
higher robustness under different noise intensities. 

II. COMPRESSED SENSING THEORY AND IMAGE 

RECONSTRUCIONT METHOD  

A  Compressed sensing theory 

In compressed sensing theory, the signal must be sparse, 
or can be represented as sparse by some transforms. In 
general, the signals are not sparse, after a certain 
transformation (such as wavelet transform), the signals can 
be considered to be sparse, for example, after the wavelet 
transform, the transform results which contain K major 
results, and other N-K results are set to zero. Assume that 

the original signal to be processed for NRf ∈ , it's sparse 

basis is matrix Ψ ,  in this way the signal f is sparse on the 

base Ψ , this process can be expressed as formula (1): 
xf Ψ=                                                    (1) 

where x  is the decomposition of the system, it has a 
sparse features as formula (2): 

kx ≤
0

                                                 (2) 

The symbol
0

x  is the norm of signal 0l , a number of 

non-zero value vector. After the signal is sparse 
representation, the random measurement can be complete by 
an observation matrix as formula (3): 

Axxfy =ΦΨ=Φ=                                (3) 

where y  is the measurement vector, MRy ∈ ，

M << N  ,because the signal has a sparse, the decoding 
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process of the above-mentioned problems can be solved by 
the following formula: 

Axytsx =..min
0

                                      (4) 

When the coefficient vectors are get, the signal f  

can be restored by xf Ψ= . 
However, formula (4) is a NP-hard problem, it can’t 

be solved within a limited time. One of the most 
important contribution of the compressed sensing theory 
is that the question of norm 0l  and be equal to question 

norm 1l , when the signals are sparse and the observation 
matrix satisfy certain conditions. 

Axytsx =..min
1

                                    (5) 

The symbol 
1

x indicates that norm of 1l , the absolute 

value of the vector. Solving problems of the norm is a 
convex optimization problem, can be resolved by linear 
programming. 

B  ADGPSR reconstruction method 

In the actual measurement process noise will be 
introduced inevitably, the model can be expressed as: 

nOxy +=                                              (6) 
Where n is the measurement noise vector. In this case, 

the signal reconstruction process can be expressed as: 

ε≤− 2

21
min Axysubjectx

x
                    (7) 

The algorithm, developed from the damped Newton 
method, for an unconstrained optimization of smooth 
nonlinear function F, it is every step of the formula 

)(1)( k
k

k zFH −−=δ                                 (8) 

Because the kH can not be calculated, need to figure out: 

][)()( 11 −− −≈∇−∇ kkkkk zzzFzF η           (9) 

Approximation algorithm of kH is not satisfied, 

increase of algorithm iterations. 

)(
2

1
min zFBzzzc TT =+                       (10) 

where ， 
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,
， u and v, respectively, 

corresponding to the positive and negative part of the vector 

x, x=u-v， 0≥u 0≥v ， n21 2n-dimensional unit column 

vector. 
The realizing process of ADGPSR as follows: 
Step 1: Choose parameters  

minα , maxα , ],[ maxmin0 ααα ∈ , set 0=k . 

Then, According to the formula (X) compute 0α
 

)()(

)()(

0
)(

)(
kk

kk

Bgg

gg
T

T

=α                                  (11) 

Step 2: Compute step 
)()1()1()()()()( )()(( kkkkkkk zzfzfz −∇−∇−= −−ααδ

  (12) 

Step 3:Search ]1,0[)( ∈kχ  in the interval to a 

minimum )(kχ ,and set   
)1()1(

2
)()(

1
)()1( −−+ ++= kkkkkk zz δλδλ            (13) 

Approximation )1( +kz solution then the algorithm 

terminates, )1( +kz  is the reconstructed image, otherwise 

look for )(kχ . 
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Where, )(kc is the vector )()( zFc k ∇=  

The parameter )(kγ is compute as follows, 
)()()( )( kTkk Bδδγ =  

Where, 

}1,
)(

)(
,0{

)()(

)()(
)(

2,1 kTk

kk
k

B

zF
mid

T

δδ
δγ ∇=                      (15) 

The parameter )(zF∇ is compute as follows, 

BzzzczF TT

2

1
min)( +=                           (16) 

Where value of 






<−

>
=

01

01

)(

)(

j

j

zif

zif
z  

kj ,2,1= , )(kz is the reconstruction vector 

In the ADGPSR method, we compute the compute the 

gradient direction of )(kz  and the step length of 1δ and 2δ , 

thus we can select the gradient direction of )(kz ,in order to 

reduce the alternately search ,thus the run time is reduced. 

We choose the negative direction of )(kz  and 

)1( −kz firstly, if  the termination is reached, the algorithm 

stops, otherwise, we choose the positive direction of )(kz  

and )1( −kz . 
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III. EXPERIMENT RESULTS AND ANALYSIS 

A  Signal reconstruction Test  

In the first experiment, we set original signals length is 
1024, observation matrix is  nk ×  gauss random matrix, 
k=256 is the length of observation vector. There are 40 
random 1± spikes,  In ADGPSR algorithm, the 

1≡kχ , 30
min 10−=α , 30

max 10=α .tau=0.005. 

The original signals and reconstruction signals are 
shown in Figure1.Experiment results show that, the MES of 
ADGPSR algorithm  is lower than the GPSR algorithm . 

 
Figure 1 MSE of original signals and reconstruction signals  

B  Image reconstruction Test  

We know that the image is not sparse itself, in this 
article, we use the wavelet transform sparse the signal. And 
the  random Gaussian matrix as the observation matrix, the 
variance distribution (0,1 / N). The reconstruction algorithm 
uses the ADGPSR(Adaptive Gradient Projection for Sparse 
Reconstruction). 

We use the GOLDHILL and RICE image to test the 
efficient of ADGPSR algorithm, the image size is 256× 256 
and 512× 512 differently, at the same time we use GPSR 
algorithm reconstruction image. The figure 2 shows the 
GOLDHILL image test results. figure 2(a) is the original 
GOLDHILL image , figure 2(b) is the noise GOLDHILL 
image with noise variance equals to 2,  figure 2(c) is the 
ADGPSR reconstruction results from noise image, figure 
2(d) is the GPSR reconstruction results from noise image. 
With the same input noise image the GPSR method PSNR is 
25.83, the GPSR method PSNR is 22.78. 

To compute the PSNR, the block first calculates the 
mean-squared error using the following equation 
formula(17), 

NM

nmInmI

MSE NM

×

−
=


,

2
21 )],(),([

                (17) 

We compute the PSNR with the follows formula(18), 

)(log10 2
10 MSERPSNR =                         (18) 

 

 
(a) GOLDHILL image              (b)noise image 

 

 
(c) ADGPSR results(PSNR=25.83) (d) GPSR results 

(PSNR=22.78) 
Figure 2 GOLDHILL image  and reconstruction results 
In order to test the adaptability of the ADGPSR 

reconstruction algorithm, we use the RICE image to test. 
Figure 3(a) is the original RICE image , figure 3(b) is the 
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noise RICE image with noise variance equals to 2,  figure 
3(c) is the ADGPSR reconstruction results from noise image, 
figure 3(d) is the GPSR reconstruction results from noise 
image. With the same input noise image the ADGPSR 
method PSNR is 16.37, the GPSR method PSNR is 14.07. 

  
(a) RICE image              (b)noise image 

  
(c) ADGPSR results(PSNR=16.37) (d) GPSR results 

(PSNR=14.07) 
Figure 3 RICE image  and reconstruction results 

IV. SUMMARY  

In this paper, ADGPSR algorithm (adaptive dual 
gradient projection for sparse reconstruction ) is proposed, 
in ADGPSR algorithm when compute the gradient 
projection of  we compute two conjugate direction of  
pursuit. The signals reconstruction quality of ADGPSR is 
higher than GPSR algorithm. We test the  ADGPSR with 
non-zero signals and noise image of RICE and GOLDHILL, 
Compared with GPSR algorithm, the reconstruction quality 
be enhanced. The PSNR  is improved 2~3dB. 

Contact Author: Liu Yanjun, E-mail: liuyanjun@ 
ciomp.ac.cn 
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