
A Review of Researching on Dynamic

Taint Analysis Technique
Peiwu Dai1*,Zulie Pan2*,Yang Li3*

1. College of Electronic Engineering, National University of Defense Technology

petrichor0324@163.com,18955185317@189.cn, 411391400@qq.com

Abstract—Taint analysis technique is the key technique

means for analyzing the robustness of programs and

vulnerability mining. By marking the data which are sensitive or

untrusted, one can observe the flow of these tainted data during

program execution, then determine whether the marked data

affects the key nodes of the program. According to the

implementation mechanism, the taint analysis can be divided

into static taint analysis and dynamic taint analysis. As an

auxiliary technique, it can be combined with mainstream

vulnerability mining techniques such as fuzzing test and symbol

execution, playing a great role in test case construction and path

feasibility analysis. This article firstly introduces the basic

concepts of dynamic taint analysis technique. Second, it focuses

on the process of dynamic taint marking, propagation and

detection. Then it summarizes the main defects in taint analysis

and the application status of dynamic taint analysis technique.

Finally, it is compared with the current mainstream taint

analysis tools and explores the future trends of taint analysis

technique.

Keywords—taint analysis; vulnerability detection;

information flow tracking; taint propagation

Ⅰ. INTRODUCTION

With the rapid development of network technique, Internet

products are blooming and bringing convenience to people's

lives. At the same time, due to the weak skill level and

security awareness of programmers, these applications have

huge security risks. In recent years, the number of

vulnerabilities and the proportion of Zero day Vulnerabilities

has increased obviously year after year [1]. Not only that, due

to the users weak security awareness, they do not update the

patch in time after the manufacturer released the patch. The

number of attacks on the 1day vulnerabilities increases

gradually. These attacks are becoming more destructive.

Hackers can create malicious and aggressive programs based

on official patches in a short period of time to attack

unpatched systems or servers [2]. According to the statistics of

360 Threat Intelligence Center, the vulnerabilities used by top

APT organizations such as equations in recent years are

mainly classified about ten categories, including two types of

server vulnerabilities, such as the SMB protocol vulnerability

"Eternal Blue" and the firewall device vulnerabilities in the

NSA network arsenal. Eight types of client vulnerabilities, are

mainly included in IOS and Android, flash vulnerabilities and

Windows privilege vulnerabilities and other four types of

office vulnerabilities. With the popularity of mobile devices,

the target of APT attacks has extended to the mobile device

field in recent years. For example, the famous Trident IOS

vulnerability and the remote2local Android vulnerability are

very common and destructive. The mobile network attack

technique is more casual and concealed. This will also

become the focus of work in the field of network attack and

defense [3].

 Based on the technical principle of taint analysis, this

paper attempts to comprehensively introduce, analyze and

summarize the technical status and application prospects of

dynamic taint analysis. Sections 2 detail the principles of

dynamic taint analysis, Section 3 explores some of the

shortcomings of dynamic taint analysis and current

improvements for these defects. And section 4 discusses about

the main applications of the dynamic taint analysis technique.

Finally, the paper is summarized and the future development

trend of dynamic taint analysis technique is estimated.

Ⅱ. TECHNICAL THEORY

A. Approximately classification

Dynamic taint analysis for taint marking, tracking, and

detection during actual program operation. According to the

different streams, it can be divided into dynamic flow analysis

technology based on data flow and control flow. Marking

external taint data and tracking its explicit propagation

method in memory is a common analysis method based on

3rd Joint International Information Technology, Mechanical and Electronic Engineering Conference (JIMEC 2018)

Copyright © 2019, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Atlantis Highlights in Engineering, volume 3

118

dynamic taint analysis of data flow. Such as TaintCheck [4],

Flayer [5], Vigliante and so on. Establishing a control flow

graph (CFG) of the program by analyzing the control flow of

the program is the usually way of taint analysis based on

control flow. Using a specific algorithm to monitor and

analyzing the implicit information flow of the propagation is a

way based on data flow. Such as Dytan [6], libdft [7], Bitblaze
[8], Agros [9] and so on.

B. Taint mark (source point) and detection (sink point)

The taint analysis structure framework is shown in Figure

1: Source points are generally composed of entry points or

external function calls that the program accepts input data.

These input data can be roughly divided into three categories:

file input, network input, and external device input. Using

machine learning combined with statistics to automatically

identifies the source and sink points [10]. And the second type,

such as DroidSafe [11], is manually labeled based on API

which called by programs. The third class considers external

data to be untrustworthy. Based on the intuitive or empirical,

the tagged variable is gradually optimized for heuristics. Such

as the tool for PHP vulnerability analysis, Aspis [12]. There are

three main rules for detection: the first one uses taint data as

the jump address. The memory data pointed to by the EIP is

also the contaminated data. One is over-tainting. Marking

non-dependent variables as taint, causing the analysis path to

explode during the propagation process, and the system

resources are consumed more. The other type is under-tainting.

Variables that control dependencies (implicit streams) may be

mislabeled as non-tainted during taint propagation, resulting

in underreporting.

Fig.1 The structure of taint marking module

At present, there are two main methods for the taint

propagation rules of binary dynamic taint analysis. The table

1 outlines the approximate instructions used by the spread of

the taint. Table 2 refers to the taint propagation logic applied

by the TaintDroid tool.

Atlantis Highlights in Engineering, volume 3

119

Table 1.Taint analysis instruction/function classification

Instruction/function type Instruction example proporgation rule

Data transfer instruction MOV、XCHG、LEA、LDS、LES、PUSH、

POP、PUSHF、POPF、CBW、CWD、CWDE

mov a, b R(a)R(b)

Arithmetic instruction ADD、ADC、INC、SUB、SBB、DEC、

CMP、MUL、DIV、DAA、DAS、AAA、

AAS

Add a, b R(a)R(b)

Logical instruction AND、OR、XOR、NOT、TEST、SHL、

SAL、SHR、SAR、RCL、RCR、ROL、ROR

Xor a, a R(a)false

Control transfer instruction JMP 、 JCC 、 JCXZ、 LOOP、 LOOPZ、

LOOPNZ、LOOPNE、CALL、RET、INT

Call memcpy() R(dst)R(src)

String operation instruction MOVS、LODS、STOS、CMPS、SCAS Movs %dx %ea

x

R(edx)R(eax)

Indirect taint function Strncpy(buf,source,len) Call strncpy() R(dst)R(src)

Sensitive function Scanf、sprintf、strcpy Call strcpy() R(dst)R(src)

Fig.2.The structure of taint tracing module

Taint deletion aims to clear some taint marks in the data

during the propagation process. Otherwise it will spread

indefinitely, and the taint will be deleted when the following

three types of operations are encountered:

1) Pass non-taint data to the registers and memory instructions

that store the taint.

2) Some special logic operations will remove the taint marks,

such as xor eax, eax, sub eax, eax, move eax Imm, etc.

3) When a tainted register is passed to a tainted register, the

passed register loses its original taint mark.

Ⅲ. DEFECTS AND MEASURES

The application of taint analysis technique to the field of

vulnerability mining mainly involves the following aspects:

A．Issues on dynamic implicit flow tag range

Accurate implicit flow propagation analysis needs to

analyze whether each branch control condition propagates the

taint mark in the actual taint analysis process. This often leads

to over-tainting. It causes a large scope of spread of the taint,

eventually producing a path explosion, which not only

consumes a large amount of system resources. Moreover, the

amount of information obtained by users is huge. It is difficult

to screen, or insufficiently labeled, resulting in inaccurate

analysis.

B. Missing reports and false reports

Partially leaked means that the taint information

Atlantis Highlights in Engineering, volume 3

120

propagated and leaked through part of the program that is not

executed. The main influencing factors of taint analysis

accuracy are false report which caused by over-tainting and

missing report which caused by under-tainting. These affect

the efficiency of vulnerability mining.

C. The defects of Current taint analysis tools which cannot

balance speed and accuracy

Dynamic taint analysis technique can be divided into

fine-grained dynamic taint analysis technique and

coarse-grained dynamic taint analysis technique according to

the analysis granularity. Fine-grained taint analysis solves the

problem of backtracking of data flow with high precision. It is

mainly used to detect vulnerable points of attack. The

coarse-grained taint analysis is fast and takes up little space.

D. Problems such as not supporting the floating point

instructions, low execution efficiency, and taint loss in JIT

(just in time) translation execution.

Jinxin Ma [13] proposed a taint analysis method based on

the offline index of the execution trace. The offline index can

be used to skip instructions that are unrelated to taint data. It

can increase efficiency in this way. A more perfect taint

propagation algorithm is also proposed, which supports the

propagation of floating-point instructions and improves the

detection capability of the vulnerability.

Ⅳ. APPLICATION FIELD STATUS

A. Crash verifing

Fuzzing technique and dynamic symbol execution

generate a large number of program crashes. There are mainly

three tools which use crash analysis technique to determine

whether the crashes are available. ! Exploitable [14] that

released by Microsoft. BitBlaze, a binary information analysis

platform developed by UC Berkely. And CRAX [15], an

automated vulnerability utilization framework based on the

AEG method proposed by IEEE in 2012.

B. Program vulnerability detection

Using the taint analysis to detect program vulnerability

and the propagating taints to various types of vulnerability

functions can find out the buffer overflow and formatting

strings in the program. Such as the dynamic and static

detection technique based on the JavaScript platform

proposed by SHYI. The Java web prototype system for web

XSS vulnerability designed by BH Liang [16] can track the

flow of web applications. It is a good way to detect XSS

vulnerabilities. Pin instrumentation and TaintCheck can also

detect program vulnerability.

C. Information leak prevention

The information carrying capacity of mobile terminal

devices is increasing day by day. So, the information leakage

detection for Android is one of the most widely used fields of

current taint analysis technique. TaintDroid can track multiple

sensitive data sources at the same time.

D. Attacking feature generation and detection

The existing black box or white box attack feature

generation method faces difficulties in sample collection, low

degree of automation, and dependence on source code. Yu Liu
[17] proposed an attack feature generation method based on

backtrackable dynamic taint analysis. It generates the attack

features of the Turing machine by monitoring the dynamic

execution of the process, extracting the operational sequences

and extracting the sequence of operations and constraints

associated with the attacking input. ERIKA [18] modified the

Java library class and the Java servlet framework to prevent

command injection vulnerabilities for the Java web.

E. Vulnerability mining

The most widely used field of dynamic taint analysis

technique is vulnerability mining. Combining with Fuzzing

technique, it automatically tracks the areas of the input

samples that affect the key positions of the program. It can

verify some logic errors in large programs, such as BuzzFuzz.

Dynamic taint analysis combined with symbolic execution

technique can automate the verification of crash input in a

program, improve the efficiency of symbol execution, and

mitigate the path explosion problem of symbol execution to

some extent, such as TaintScope [19].

F. Malware detection

A big challenge for malware detection is that the

software and hardware resource costs required by software

detector makes it impossible to monitor each application.

SwordDTA [20] proposed by CAJ Jun detects malware through

vulnerability modeling and taint propagation. For mobile

Atlantis Highlights in Engineering, volume 3

121

malware detection, Y Aafer proposed DroidAPIMiner [21] to

extract the relevant functions of the captured API-level

malware. And using the generated feature set to evaluate

different classifiers can achieve higher accuracy. Combining

taint analysis technique with machine learning and training

malware sample sets, online identification and detection of

malware is an important technique point in the future.

Ⅴ. SUMMARY AND OUTLOOK

According to the analysis of this paper and combining the

research status of this field, it is preliminarily believed that

the future development trend of taint analysis technique will

have the following points:

A. Program performance analysis, defect location, and error

detection

How to design mining tools based on taint analysis

technique to reduce the false reporting rate and discover the

security vulnerabilities from common fuzzing testing tools. It

will be a hot research direction. The RETracer [22] tool

performs binary-level back-taint analysis. It understands how

functions on the stack cause crashes without recording

execution traces.

B. Optimize the efficiency of dynamic taint analysis

How to reduce the analysis cost as much as possible

without affecting the analysis performance is a difficult point.

How to selectively control the number of taints that you want

to spread is one of the solutions. It is good to delete

unnecessary taints in time. Reducing unnecessary system

resource consumption and combining the scope of semantic

rule deletion analysis are also good solutions.

C. Hidden channel issues

At present, the pollution detection methods for implicit

flow generally have the status of over-tainting and

under-tainting. For issues such as implicit flow, shutdown

channel, probability channel, how to choose a reasonable

propagation branch is a difficult point. In addition, for some

detection tools for Android (such as TaintDroid, Droid

Analytics [23], etc.) can only be improved through some

heuristic strategies.

D. Automation

One idea is to provide a unified mapping language F4F [24]

for analysis. It solves the problem of callback function

characteristics by adding virtual access points. Due to the

complexity of the analysis language and some of the

drawbacks of the dynamic taint analysis technique itself

(over-contamination, under-contamination, etc.), the

implementation of automation is still very difficult.

References

[1] Lai Y P, Hsia P L. Using the vulnerability information of computer

systems to improve the network security[J]. Computer

Communications, 2007, 30(9):2032-2047.

[2] Zero Day Initiative.www.zerodayinitiative.com/[2018-8-27].

[3] Paper. https://paper.seebug.org/565/[2018-08-27].

[4] Zhu G M, Zeng F P, Yuan Y, et al. Blackbox Fuzzing Testing Based on

Taint Check[J]. Journal of Chinese Computer Systems, 2012,

33(8):1736-1739.

[5] Drewry W, Ormandy T. Flayer: exposing application internals[C]//

Usenix Workshop on Offensive Technologies. USENIX Association,

2007.

[6] Clause J, Li W, Orso A. Dytan: a generic dynamic taint analysis

framework[C]// Proceedings of the 2007 international symposium on

Software testing and analysis. ACM, 2007:196-206.

[7] Kemerlis V P, Portokalidis G, Jee K, et al. libdft: practical dynamic

data flow tracking for commodity systems[C]// ACM Sigplan/sigops

Conference on Virtual Execution Environments. ACM, 2012:121-132.

[8] Miller C, Caballero J, Berkeley U, et al. Crash analysis with

BitBlaze[J]. Revista Mexicana De Sociología, 2010, 44(1):81-117.

[9] Argos. http://www.few.vu.nl/argos/[2018-8-27].

[10] Rasthofer S, Arzt S, Bodden E. A Machine-learning Approach for

Classifying and Categorizing Android Sources and Sinks[C]// Network

and Distributed System Security Symposium. 2014.

[11] Gordon M I, Kim D, Perkins J, et al. Information-Flow Analysis of

Android Applications in DroidSafe[C]// Network and Distributed

System Security Symposium. 2015.

[12] Crandall J R, Chong F T. Minos:Control Data Attack Prevention

Orthogonal to Memory Model[C]// International Symposium on

Microarchitecture. IEEE, 2004:221-232.

[13] Jinxin Ma, Zhoujun Li, Tao Zhang. Research on Taint Analysis Method

Based on Execution Trace Offline Index[J]. Journal of Software, 2017,

Atlantis Highlights in Engineering, volume 3

122

28(9): 2388-2401.

[14] Microsoft. ! exploitable crash analyzer------ MSEC debugger

extensions [EB /O L]. [2018-09-05]. http：/ /msecdbg. codeplex.

com.

[15] Huang S K, Huang M H, Huang P Y, et al. CRAX: Software Crash

Analysis for Automatic Exploit Generation by Modeling Attacks as

Symbolic Continuations[C]// IEEE Sixth International Conference on

Software Security and Reliability. IEEE Computer Society,

2012:78-87.

[16] Pezzè M, Harman M. Proceedings of the 2013 International

Symposium on Software Testing and Analysis[J].

[17] Yu LIU, Mei-ning NIE, Yi-rui SU. Attack feature generation method

based on backtrackable dynamic taint analysis[J]. Transactions of

Communications, 2012, 33(5): 21-28.

[18] Chin E, Wagner D. Efficient character-level taint tracking for Java[C]//

ACM Workshop on Secure Web Services. ACM, 2009:3-12.

[19] Wang T, Wei T, Gu G, et al. TaintScope: A Checksum-Aware Directed

Fuzzing Tool for Automatic Software Vulnerability Detection[C]//

IEEE Symposium on Security and Privacy. IEEE Computer Society,

2010:497-512.

[20] Cai J, Zou P, Ma J, et al. SwordDTA: A dynamic taint analysis tool for

software vulnerability detection[J]. Journal of Wuhan University

(Natural Science English Edition), 2016, 21(1):10-20.

[21] Aafer Y, Du W, Yin H. DroidAPIMiner: Mining API-Level Features for

Robust Malware Detection in Android[M]// Security and Privacy in

Communication Networks. Springer International Publishing,

2013:86-103.

[22] Cui W, Peinado M, Sang K C, et al. RETracer:triaging crashes by

reverse execution from partial memory dumps[J]. 2016:820-831.

[23] Zheng M, Sun M, Lui J C S. Droid Analytics: A Signature Based

Analytic System to Collect, Extract, Analyze and Associate Android

Malware[C]// IEEE International Conference on Trust, Security and

Privacy in Computing and Communications. IEEE Computer Society,

2013:163-171.

[24] Sridharan M, Artzi S, Pistoia M, et al. F4F: taint analysis of

framework-based web applications[J]. ACM SIGPLAN Notices, 2011,

46(10):1053-1068.

Atlantis Highlights in Engineering, volume 3

123

