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Abstract—Knowledge of earthquake predictions is very 

important, especially to recognize patterns of occurrence. This 

paper proposes an earthquake prediction system, in the form of 

b-value predictions as parameters that indicate the potential for 

earthquakes. The methods used are neuro-fuzzy with ANFIS 

structure and Extreme Learning Machine (ELM). From the 

experimental results, it shows that the ELM method has better 

performance than Neuro-fuzzy with ANFIS structure. 

Keywords—neuro-fuzzy; ANFIS; extreme learning machine; 

ELM; earthquake; prediction. 

I.  INTRODUCTION 

An earthquake is a vibration that occurs on the surface of 
the earth due to the sudden release of energy that creates 
seismic waves. Earthquakes are usually caused by the 
movement of the Earth's crust (Earth's plate). The frequency of 
an area refers to the type and size of the earthquake 
experienced over a period of time. Earthquakes are measured 
using a Seismometer tool. Moment magnitudes are the most 
common scale where earthquakes occur for the whole world. 

Indonesia is one of the countries prone to earthquakes 
because it is located in the area of meeting three major tectonic 
plates namely the Pacific Plate, the Indo-Australian Plate and 
the Eurasian Plate[1].The plates are relatively moving between 
one another, where the Indo-Australian Plate moves from south 
to north, and the Eurasian Plate moves from north to south-
southeast to meet along the west of South Sumatra, Java, Nusa 
Tenggara, and ends on the southern part of the Palu-Koro fault 
in the southeast of Sumba Island.Features of subduction zones 
and of oceanic crust and mantle of the Indonesian regionas 
shown in Fig. 1 [1]. 

 

Fig. 1. Features of subduction zones and of oceanic crust and mantle of the 

Indonesian region. 

The Sumatra region is part of the Sunda archipelago, 
which extends from the Andaman-Nicobar archipelago to the 
Banda arc (Timor). The Sunda arc is an archipelago arising 
from the interaction of the oceanic plate (the Indo-Australian 
plate moves north at a speed of 7 cm per year) which falls 
beneath the continental plate (Eurasian Plate). Plate 
subduction occurs south of the Sunda arc in the form of a 
trench. Also, the subduction of the plate forms a range of 
volcanoes and volcanic hills (rows of hills) along the 
Sumatran mainland and the Sumatra fault (Sumatra Fault) 
which divides the Sumatra mainland [2]. 

The Sumatra-Andaman region is one of the active quake 
regions in the world. It has a unique tectonic pattern, in the 
west of Sumatra stretches the subduction zone area parallel to 
the coastline of Sumatra, on the land extending the Sumatra 
fault which divides Sumatra Island into two, from the 
Andaman Bay at the north end to Semangko Bay at the south 
end parallel to the zone straightness subduction [3]. Recorded 
in the last decade there have been three major earthquakes, 
namely the December 26, 2004 Aceh earthquake, the March 
28, 2005 earthquake, and the Padang earthquake of September 
30, 2009. The earthquake that occurred in this region has 
claimed many lives and property. 
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This research proposes an earthquake prediction method 
for the Sumatra region based on earthquake occurrence data 
from previous years. The research location is limited to 
Sumatra Region from 92°-106° East Longitude (EL) and 6.5° 
South Latitude (SL) - 8° North Latitude (NL). The prediction 
methods used in this research are the Neuro-Fuzzy with 
Adaptive Neuro-Fuzzy Inference System (ANFIS) structure 
and Extreme Learning Machine (ELM). These methods are 
used to identify earthquake time series prediction based on 
training data.  The aim is to predict b-values that describe the 
seismotectonic state of a region that can be seen from the 
relative frequency of large earthquakes and small earthquakes 
that occur. The estimated earthquake parameters of this b-
value as a strong earthquake precursor based on time series 
data, without taking into account the characteristics of other 
earthquake physical parameters. 

Some research on ANFIS for prediction can be mentioned 
as follows: [4–7]. Likewise, some ELM applications for 
prediction can be read in the following references: [8–12]. 

II. SPATIAL VARIATIONS IN SEISMICITY 

The relationship of frequency-magnitude (Frequency-
Magnitude Distribution, FMD) is one way to determine seismic 
activity in an area (Fig. 2). FMD from earthquakes was first put 
forward by Gutenber-Richter[13], which is a power law. 
Globally the b-value approaches 1, which means that 10 times 
the decrease in activity is related to the increase in each unit of 
magnitude. This relationship is known as the Gutenberg-
Richter relation, written as in (1): 

 bMaMLogN −=)(  (1) 

Where n (M) is the number of earthquakes with magnitude 
M. Whereas the a-value is a seismic parameter whose 
magnitude depends on the number of earthquakes and for 
certain regions depending on the determination of volume and 
time window. 

The constant b is a tectonic parameter, indicated by the 
slope of the FMD curve in Fig. 2. Empirically according to 
Wiemer & Wyss [14], the size of b-value has a range from 0.4 
to 2.0, and can describe the seismotectonic state of an area 
which is seen from the relative frequency of the earthquake, big 
and small earthquake that happened. If an area regularly 
produces small earthquakes and rarely produces large 
earthquakes, the frequency-magnitude curves will be sharper 
and the curve gradient (b-value) will be greater than the area 
that rarely produces small earthquakes but occasionally 
releases large earthquakes. The fundamental parameters that 
affect large b-values are the accumulation of stress acting on 
rocks, low b-values associated with high-stress shear, and vice 
versa. Based on this concept Schorlemmer & Wiemer [15] 
make b-value a stress measure. 

 

Fig. 2. Gutenberg-Richter relation that describes the relationship between the 

logarithm of a number of earthquakes and magnitude. 

The b-value parameter can be determined by the least 
square method or the maximum likelihood. The maximum 
likelihood method uses the equation given by Utsu [16] as in 
(2). 
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Where M is the average magnitude, and Mmin is the 
minimum magnitude. The standard deviation uses formulas 
from Shi and Bold [17] as in equation (3). 
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Where n is the number of earthquakes at the sampling 
calculation. 

Research on spatial and temporal variations of b-values has 
been widely carried out, including research by Kumar[18] 
regarding the correlation of spatial and temporal variations of 
b-values to earthquake events and their relation to fractal 
dimensions in the Himalayan fault. Analysis of the correlation 
between spatial and temporal b-value variations on stress, 
seismicity, and tectonics in Bali, Lombok and Sumbawa by 
Pratiwi[19], while Sunardi [20] analyzed the relationship 
between fractal dimensions and the Bali-NTB slip ratio based 
on variation mapping tectonic parameters. Research in the 
Indonesia region was carried out by Rohadi [21]showing that 
variations in spatial a-value ranged from 4.0 to 12.1 and 
variations in b-value ranged from 0.6 to 1.8, while the return 
period of the M earthquake ranged from 6.5 to 4 - 12 years. 

III. PROPOSED METHODOLOGY 

A. Research Data 

The data used in this research are earthquake data from the 
International Seismological Center (ISC) catalog of the 
Sumatra-Andaman region, covering the limits of 92°-106° East 
Longitude (EL) and 6.5° South Latitude (SL) - 8° North 
Latitude (NL), the period of January 1973 - November 2014. 
Magnitude is greater than 3.0 SR, with a depth of less than 300 
km. 
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The b-value change curve on average for time for the entire 
research area is shown in Fig. 3. The red bars indicate when a 
large earthquake occurred with M> 6.5. The curve shows 
almost all the occurrences of earthquakes M> 6.5 which 
approached the ideal condition, namely the b-value 
experienced a decline in the period close to the time of the 
earthquake and experienced an increase in the interval of <1 
year. 

 

Fig. 3. The plot of b-value is averaged over time 

B. Model Structure 

The data used is b-value data from January 1973 - 
November 2014, or as many as 455 months. For ease of data 
format, only 450 months are used. The model structure of the 
training data and validation data from this research is designed 
as shown in Fig. 4. 

b
-v
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u

e

month  

Fig. 4. The model structure of b-value training data and validation data 

C. ANFIS Structure 

By the training data and validation data format in Fig. 4, 
then the ANFIS structure for Forward Pass and Backward Pass 
is designed with 4 inputs and 1 output, as shown in Fig. 5 and 
Fig. 6.The processes in each layer with each node given n1 to 
n21 notation, are described as follows. 

Forward Pass 

Layer 1: 

In the layer 1 the fuzzification process is applied, using the 
fuzzy Bell membership function, as in equation (4). 

 𝑛𝑖 =  
1

1+ |
𝑥−𝑐𝑖

𝑎𝑖
|
2𝑏𝑖

 (4) 

Where i = 1, ..., 8; n1, ..., n8 are membership functions; x is 
input; {ai, bi, ci}are each set of fuzzy membership function 
premise parameters. 

 

Layer 2: 

In this layer applied AND fuzzy logic as a function node, the 
output node is as in (5). 

           n9   = min (n1, n3) 

           n10 = min (n2, n4) 

           n11 = min (n5, n7) 

           n12 = min (n6, n8) 

   (5) 

Layer 3: 

In this layer, it normalizes the incoming signal. Suppose ntot= 
n9 + n10 + n11 + n12, then this layer output is obtained as (6). 

           n13 = n9/ntot 

           n14 = n10/ntot 

           n15 = n11/ntot 

           n16 = n12/ntot 

   (6) 

Layer 4: 

In this layer, the Least Square Estimator method is applied to 
obtain consistent parameters (𝜃(1), … , θ(20)). If input 1 is 
shortened to in1, input 2 as in2, input 3 as in3, input 4 as in4, 
thenthis layer output as in (7) and (8). 

𝑓1 =  𝜃(1). 𝑖𝑛1 + 𝜃(2). 𝑖𝑛2 + 𝜃(3). 𝑖𝑛3 + 𝜃(4). 𝑖𝑛4 + 𝜃(5) 

𝑓2 =  𝜃(6). 𝑖𝑛1 + 𝜃(7). 𝑖𝑛2 + 𝜃(8). 𝑖𝑛3 + 𝜃(9). 𝑖𝑛4 + 𝜃(10)(7) 

𝑓3 =  𝜃(11). 𝑖𝑛1 + 𝜃(12). 𝑖𝑛2 + 𝜃(13). 𝑖𝑛3 + 𝜃(14). 𝑖𝑛4 + 𝜃(15) 

𝑓4 =  𝜃(16). 𝑖𝑛1 + 𝜃(17). 𝑖𝑛2 + 𝜃(18). 𝑖𝑛3 + 𝜃(19). 𝑖𝑛4 + 𝜃(20) 

n17 = n13.f1 

n18 = n14.f2 

n19 = n15.f3 

n20 = n16.f4 

   (8) 

Layer 5: 

In this layer 5, the output means the ANFIS network output, 
which is the sum of all incoming signals, as in (9). 

  n21 = n17 + n18 + n19 + n20                                   (9) 

Backward Pass 

 Furthermore, to correct the ANFIS network output error, 
the gradient descent method with Error Backpropagation (EBP) 
is used, in the Backward Pass process.Error correction from the 
results of the EBP process from layer 5 to layer 1, denoted in 
ɛ21, .., ɛ1, as shown in Fig. 6. 
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Fig. 5. The Forward Pass ANFIS structure 

D. ELM structure 

ELM is a new learning method of Artificial Neural 
Networks (ANN). This method was first introduced by 
Huang[22]. ELM is a feedforward ANN with a single hidden 
layer or commonly called Single Hidden Layer Feedforward 
Neural Networks (SLFNs). 

ELM learning method is made to overcome the 

weaknesses of feedforward ANN especially regarding learning 

speed. Two reasons why feedforward ANN has a low learning 

speed are[22]: 

1. Using a slow gradient-based learning algorithm for 

training. 

2. All parameters in the network are determined iteratively by 

using the learning method. 
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Fig. 6. The Backward Pass ANFIS structure 

In learning using conventional gradient-based learning 
algorithms such as EBP and the Marquadt Lavenberg variant 
(LM) all parameters in the feedforward ANN must be 
determined manually. The parameters in question are input 
weight and hidden bias. These parameters are also 
interconnected between one layer to another, so that requires 
long learning speed and is often trapped on local minima [23]. 

Whereas in ELM parameters such as input weight and 
hidden can be chosen randomly, so ELM has a fast learning 
speed and is able to produce good generalization performance. 
In accordance with the training data format and validation data 
in Fig. 4, then the ELM structure is designed as shown in Fig.7. 

1

L


Problem-based 

optimization 

constraints

Input data (training 

data and

Validation data)

1

N

1

L

L neuron 

hidden

N neuron 

input

 

Fig. 7. The ELM structure 
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E. Flow diagram 

By the training data and validation data format in Fig. 4, as 
well as the ANFIS structure in Fig. 5 and Fig. 6, then the 
flowchart of the ANFIS training process and the ANFIS testing 
process for the b-value prediction that indicate earthquake 
potential, is designed as shown in Fig. 8 and Fig. 9. 

Start

Enter 

Training Data

Layer 1 Process

(Fuzzyfication)

Layer 2 process

(AND logic)

Layer 3 process

(Normalization)

Layer 4 process

(Least Square Estimator)

Layer 5 process

(Network Output)

Error accepted or 

maximum iteration?

Network Output 

+ Error

Backward Pass using 

Error Backpropagation

Update Membership 

function parameters

Final Membership 

Function parameters

End

yes

no

 

Fig. 8. The flowchart of the ANFIS training process 

Whereas the flowchart of the ELM training process and 
testing process for b-value predictions that indicate earthquake 
potentialis designed as shown inFig. 10. 

Start

Enter testing 

data

Layer 1 Process

(Fuzzyfication)

Layer 2 process

(AND logic)

Layer 3 process

(Normalization)

Layer 4 process

(Least Square Estimator)

Layer 5 process

(Network Output)

Prediction 

Results

End
 

Fig. 9. The flowchart of the ANFIStesting process (prediction) 

Start

Normalization Process

training

Best weight

Testing

Error accepted ?

End

yes

no

Autocorrelation 

Process

Prediction results

parameters

Input training data, number 

of hidden neurons, and

activation function

Input testing data, input 

weight, bias weight and 

output weight

 

Fig. 10. The flowchart of ELM training process and testing process 

(prediction) 
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IV. RESULTS AND DISCUSSION 

Furthermore, it will be tested the prediction of b-value that 
indicate the existence of earthquake potential, using the Neuro-
fuzzy method with ANFIS structure and ELM method. 

A. ANFIS Training Results 

The results of the ANFIS training process are shown in 
Fig.11 and Fig. 12 

 

Fig. 11. The Membership function of ANFIS training results 

 

Fig. 12. The ANFIS training results 

B. ANFIS Testing Results 

The results of the ANFIS testing process for b-value 
predictions that indicate earthquake potential are shown in 
Fig.13. 

 

Fig. 13. The ANFIS testing results 

C. ELM Training Results 

The results of the ELM training process are shown in 
Fig.14. 

 

Fig. 14. The ELM training results 

D. ELM Testing Results 

The results of the ELM testing process for b-value 
predictions that indicate earthquake potential are shown in 
Fig.15. 

 

Fig. 15. The ELM testing results 
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E. Results Summary 

From the training and testing of experimental results for b-

value predictions that indicate earthquake potential, using a 

neuro-fuzzy method with ANFIS structure and ELM method 

can be summarized in Table I and Table II. 

TABLE I.  TRAINING RESULTS 

Method RMSE MAPE 
Percentage of 

success 

ANFIS 0.00296375 0.223108 99.7769 

ELM 6.33494e-07 5.77743e-05 99.9999 

TABLE II.  PREDICTION RESULTS 

Method RMSE MAPE 
Percentage of 

success 

ANFIS 1.50706 78.159 21.841 

ELM 6.25281e-07 6.09082e-05 99.9999 

V. CONCLUSION 

From the experimental results in this earthquake prediction, 
it shows that the Extreme Learning Machine (ELM) method 
has better performance than Neuro-fuzzy with ANFIS 
structure. Superior performance, seen both during the training 
process and when used to predict b-value as a parameter that 
indicates the potential for an earthquake. 
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