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Abstract- Longitudinal vibrations of vertical bar of harmonic 

and random disturbance are considered. Mathematical models of 

free, forced harmonic and random vibrations are described. The 

methods of d'Alembert, separation of variables and finite 

differences are used. To determine the eigenvalues of boundary 

value problem, a high-precision and tabular analytical method is 

proposed. The eigenfunctions, amplitude-frequency 

characteristics of kinematically excited harmonic and random 

vibrations are discussed. The analogies and connections between 

the solutions of deterministic and stochastic problems are 

identified. A number of conclusions are made that contribute to 

the theoretical and methodological foundations of the 

interdisciplinary interaction of research in the structural 

mechanics and seismology. 

Keywords-: harmonic and random vibrations, continually discrete 
system, spectral density of random process, discrete line spectrum of 
dispersions. 

I. INTRODUCTION 

The tasks of the theory of seismic resistance are among the 
most complex modern problems of the construction design [1]. 
Currently, both standards and studies mainly focus on the 
transverse vibrations from the horizontal effects of earthquake 
on buildings and structures. Meanwhile, longitudinal 
vibrations cause a certain danger to vertical building structures 
located near the earthquake epicenter [2, 3]. In [3], it is stated 
that “the vertical component dominants over other vibrational 
components in the epicentral area”. It is known that during the 

Gazli earthquake of 1976 (Uzbekistan, the USSR), the vertical 
accelerations of the ground surface had greatly exceeded the 
horizontal ones. In the Spitak earthquake, at the main push, the 
ground acceleration in horizontal and vertical directions was 
amounted to 0.21 g, 0.15 g, respectively [4].  

The study of longitudinal vibrations is also relevant when 
we talk about man-made impact on bases and foundations. 
They arise from traffic, machinery and equipment being 
operated at close distances from the building structures and 
can transmit significant kinematic and dynamic effects. At the 
same time the longitudinal vibrations of vertical bar structures 
are little studied and the number of written works is 
insignificant [5]. 

Both seismic and man-made disturbances of stochastic 
nature can be described for the preliminary calculations in the 
form of a harmonic process  .e A=(t)u ti

00
  Such a replacement 

becomes adequate if the disturbances are narrowband random 
processes of particular frequency. In support of such a 
deterministic analysis of seismic impact, it can be argued that 
the understanding of deterministic representation of seismic 
impact and the response from it allows a good understanding 
of the nature of the structure. The results obtained below 
confirm this assumption. 

These structures are often continual discrete systems, 
consisting of the areas with the distributed mass and 
concentrated masses. Publications [6–8] are devoted to this 
topic.  
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Let us consider a vertical homogeneous bar (Fig. 1) with a 
uniform cross-section, with the length sections l, made of 
material with the elastic modulus E, with the material density 
ρ, cross-sectional areas Sj, carrying the discrete masses Mj at 
different height levels and based on an elastic foundation with 
a coefficient stiffness c and mass foundation M0. The dynamic 
displacement of the sections is described by the function u(x, 
t). The static displacements constituting a small part of total 
deviations are not considered in this work. 

II. FREE VIBRATIONS 

It is known that free longitudinal vibrations of bars are 
described by partial differential equation of hyperbolic type 
with respect to the displacement of the section in the 
longitudinal direction u(x, t), 

ü - a2 u'' = 0,     a2 = E / ρ ,     x ϵ(0,l),     t > –.           (1) 

The point above the symbol corresponds to the time 
derivative, the superscript strokes correspond to the 
differentiation with respect to the argument x. The design 
model gives the boundary conditions arising from the 
conditions of fixing the ends of the bar 

 
Fig. 1. Design model 

 

 

 

 

 
 

 

Fig. 2. Area connections 

 

0,t)cu(0,-t)(0,u M-t)(0,ub 01 = 
   bj = ESj.           (2) 

bru'( l , t) + 0)t,(uMr =l ,    t > – .                 (3) 

where, 1, j, r in the subscripts are the numbers of the 
corresponding areas. Additional conditions are still required to 
ensure the area connections of the bar separated by 
concentrated masses. Let’s find them making up the equation 
of motion of the given masses basing on the d'Alembert 
principle (Fig. 2)   

N+ - N- - Dj = 0,                                  (4) 

consisting in the fact that internal and inertial forces must be 
balanced. N+, N- are the longitudinal forces in the upper and 
lower cross-sections, Dj is the d'Alembert inertia force. Let’s 
replace the forces in (4) with their expressions and write the 
following: 

1. -r … 2, 1, = j0,t),(xu M-t),(x u b -  t),(xu b jjj-jj+1j+ =   (5) 

The initial conditions for free vibrations are not required; 
kinematic disturbances of the base are not taken into account 
u0(t)  0. 

Equations (1) - (3), (5) form a mathematical model of free 
vibrations. We will write the solution of the problem using the 
method of separation of variables as a product  

u(x,t) = X(x) eiωt,                            (6) 

where, X (x), ω is eigenform and the vibration frequency. 
Substitution of (6) into (1) - (3), (5) gives  

ω2X +a2X''= 0,      xϵ (0, Ɩ).                           (7) 

b1X'(0) + ω2 M0X(0) – сX(0) = 0,  brX'(Ɩ) - ω2MrX(Ɩ) = 0.   (8) 

.1r...,2,1j,0XMXbXb j
2

j1j −==+− −++          (9) 

The boundary value problem (7) - (9) is then solved using 
the finite difference method [9]. This choice is justified by the 
fact that the algorithms and programs obtained in this case 
easily adapt to vibrations of bars of variable cross-section, to 
forced vibrations from the dynamic and random loads. To this 
end, instead of the continuous domain of definition of the 
variable x let’s introduce a discrete domain Lh in the form of 
nodes of a uniform grid with h step 

  ,)1n(Lh,n,,2,1i,h)1i(x:xL iih −==−==   

where, n is the number of grid nodes. Let’s replace the values 
of the function and derivatives with the approximate well-
known finite-difference values at the grid nodes with the 
accuracy of O(h2). For the equation (7), the central differential 
derivatives at the internal points i = 2, 3, ... n-1 will be used, 
for the end points i = 1, n is one-sided differential derivatives. 
At the points with coordinates of concentrated masses there 
are discontinuities of the first derivative of the function X(x) 
of the first kind, i.e. it is not smooth. Therefore, one-sided 
derivatives for X '(x) should be applied here. As a result, a 
system of algebraic equations was obtained in matrix-vector 
form 

B(ω)X = 0.                                      (10) 

where, B is a square matrix of order n, X = [X1, X2, ..., 
Xn] T is a transposed vector the components of which are the 
bar displacements in the grid nodes. 

The system of equations (10) has a trivial solution, which 
corresponds to a static problem and is not of great  interest. 
Non-zero solutions can exist if the determinant of A is zero, 
i.e.   

det B( ) = 0.                             (11) 

The characteristic equation (11) is an algebraic equation 
relative to  . Its roots form a numerical set of cardinality n. 
When determining the elements of this set, one can do without 
composing this equation, taking advantage of the possibility of 
constructing a high-precision diagram ω - detB (), for 
example, using Matlab computing complex. The abscissas of 
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the intersection of the diagram of the axis ω determine the 
vector of eigen frequencies Ω. 

Example 1. Let Fig. 1 show a bar of a standard steel pipe 
with length of the sections l = 3 m, with the number of 
sections r = 4, diameter D = 102 mm and wall thicknesses δ = 
[3.2; 2.8; 2.2; 1.8] mm descending upwards. The bar rests on a 
foundation with the mass M0=10,000 kg and a foundation with 
a stiffness coefficient c = 106 N/m. The discrete masses are 
given by the vector M = [2000; 4000; 1000; 3000] kg. 

The results obtained in the Matlab computing environment 
are shown in Fig. 3. The first three eigenvalues read from the 
monitor screen are equal to = [9.9; 70.9; 132.7] sec-1. 

 
Fig. 3.  Eigenvalues 

The seismic kinematic impact on the bases of building 
structures are random processes with a continuous non-
uniform frequency spectrum. The dominant frequencies are in 
the region of small values: 0 ... 30 c-1. In this case, the first 
eigen frequency falls into this area, which can lead to 
dangerous resonant vibrations. Therefore, it is necessary to 
take measures for the detuning of eigen frequencies from the 
dominant seismic frequencies. This can be done in various 
ways, for example, by increasing the rigidity of the structure, 
reducing the mass, etc. 

The second and the third frequencies do not create danger 
for seismic stability of the structure, since at these frequencies 
the spectral density of random process of disturbances is very 
small.   

Next, the task is to find the eigenvectors Yk (k = 1, 2, 3, ... 
n) of matrix B, representing the eigenmodes of vibrations. 
They can be determined by the well-known methods of linear 
matrix algebra. It should be noted that the determinant of 
matrix B is zero and, therefore, the eigenvectors can be 
calculated only up to a term. In this case, one of the nonzero 
components of the vector Yk can be taken to be an arbitrary 
number, for example, one. Then, on substituting one and 
excluding one of the elements of the vector Yk, the equation 
(10) is converted to 

D(Ωm)Ym = dm.                             (12) 

where, D is a square matrix of the order n-1; Ym, dm– (n-1) are 
dimensional vectors obtained by substituting one into equation 
(10).  

It is quite natural that the determinant of matrix D is not 
zero, Ym is easily calculated, an arbitrary unit is added to it 
and the desired eigenfunction Yk is formed.  

According to the example given above, using such 
algorithm and the system (12) it is possible to obtain the 
eigenvibration shown in Fig. 4.  

 

Fig. 4. Eigenfunctions 

The analysis of the curves shows that the a priori 
assumption that the eigenfunctions are not smooth is justified. 
The derivative X'(x) in the places of concentration of discrete 
masses has discontinuities of the first kind. 

It can be seen that the continental part of the structure 
insignificantly affects free vibrations, which is explained by its 
small mass in comparison with discrete masses.  

The diagram of the first form of vibrations shows that the 
displacements of all sections are almost identical. 
Consequently, the dynamic deformations and stresses at low 
disturbance frequencies will be insignificant.  

The vibrations in the second form occur in such a way that 
the lower and upper parts move in the opposite directions to 
the demarcation point at a height of 4 meters. Similar 
phenomena are observed in the third form vibrations, but with 
three areas or zones of alternating phases of displacements. 
The discrete mass M2, significantly exceeding the others, 
dominates in the definition of this mode of vibrations. Similar 
phenomena are observed in vibrations of the third form, but 
with three areas or zones of displacement. It is noticeable that 
the foundation with a large mass M0 has a significant impact 
on the mode of oscillation. 

Additional consideration of higher eigenvalues and 
functions showed that these spectral pairs are divided into two 
sets. The first set contains pairs formed by discrete masses, 
and their number is equal to the number of such masses. The 
second set of infinite, but calculated power corresponds to 
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vibrations of continual part of the structure. Such a clear 
distinction occurs in the cases considered in this work, when 
discrete masses are significantly superior to the masses of 
continual segments. The study of this issue with free 
vibrations of mechanical systems of mixed nature, where the 
distributed and concentrated masses are comparable in 
magnitude is worthy of attention. 

III. KINEMATICALLY EXCITED HARMONIC VIBRATIONS 

 The kinematic disturbances affecting the elastic foundation 
are presented as a harmonic function (Fig. 1) 

 .e A=(t)u ti
00

  

Then, the deterministic mathematical model of forced 
longitudinal vibrations can be represented using the main 
hyperbolic equation in partial differential  

ü - a2 u'' = 0,    a2 =E/  ,    ϵ(0, l),    t >–           (13) 

and boundary conditions 

= (t) cu+t)cu(0,-t)((0,u M-t)(0, u' b 001  0.      (14) 

bru'( l , t) + Mrū(l, t) = 0,      bj = EAj,      t > –.    (15) 

The solution of the problem (13)-(15) will be  writen using 
the method of separation of variables as the product 

u(x,t) = X(x) eiΩt,                                 (16) 

where, X(x) is the eigenfunction; Ω is the vibration frequency. 
Substitution of (16) into (13)-(15) gives 

Ω2X + a2X''= 0,      xϵ (0, Ɩ).                      (17) 

b1X'(0) + Ω2M0X(0) – cX(0)+сA0 = 0.              (18) 

0,X M  +X b- X b j
2

-j+1+j = j=1,2, …r–1.  (19) 

brX'(Ɩ) - Ω2 MrX(Ɩ) = 0.                         (20) 

The problem (17)-(20) is then solved using the finite 
difference method. Then, instead of the equation (17) the 
following algebraic equations is obtained 

.)a/h(2,1n,,3,2i

,0XXX
2

1ii1i

+−=−=

=++ +−


               (21) 

At the same time the additional conditions (18 - 20) take the 
form 

βX1 + 4X2- X3 = d1,  β = -3+2h(M0Ω2-c)/b1,d1=-2hcA0/b1.  (22) 

-bjXk-2+4bjXk-1+εjXk+4bj+1Xk+1-bj+1Xk+2=0, j=1, 2, …r - 1. (23) 

j
2

j1jj Mh2b3b3 +−−= + . 

.b/Mh23,0XX4X rr
2

n1n2n −==+− −− (24) 

The system of equations (21)-(24) is rewritten in a matrix-
vector form resulting in the following: 

BX = d,                                      (25) 

where, B (Ω), d is the matrix of coefficients and the vector of 
the right side: 

 

The zero elements of the matrix are not shown. 

Example 2. Let us assume that Fig. 1 shows a bar of a 
standard steel pipe with the length of the  sections l = 3 m, 
number of the sections r = 4, diameter D = 102 mm and wall 
thicknesses δ = [3,2; 2.8; 2.2; 1.8] mm descending upwards. 
The bar rests on a foundation with the mass M0 =10,000 kg 
and a foundation with a stiffness coefficient c = 106 N/m. The 
vector of discrete masses M = [2000; 4000; 1000; 3000] kg 
and the amplitude of harmonic kinematic perturbations A0 = 
10 cm are given. 

An initial fragment of the eigenfrequency spectrum was 
obtained for a given bar. 

ω = [ 9.9;    70.9;   132.7 ] sec-1.                      (26) 

The solution results of the system of equations (25) are 
represented by the forms of forced harmonic vibrations X(x) 
in Fig. 5, constructed with the disturbance frequency values  

Ω = [ 5;    69;    132.5 ] sec-1. 

 
Fig. 5. Form of harmonic vibrations 
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The nature of the curves significantly depends on the 
location of Ω within the spectrum of eigenfrequencies (26). 
Basinf on the analysis of the curves shown in Fig. 5 it can be 
stated that at the disturbance frequencies Ω <ω1 (curve 1) the 
curved axis of the bar is a straight line, the deviations of the 
bar with concentrated masses along the entire length are in-
phase. With the frequency of disturbances Ω> ω1, the 
movements of the ends of the bar become opposite (curve 2), 
i.e. they are in phase opposition. As Ω approaches ω3, the 
shape of the curve is close to the third form of free vibrations 
(curve 3). A strong influence of the heaviest masses M0 and 
M2 is shown in Fig. 4. 

In all cases, the lines X(x) are similar in shape to the 
eigenfunctions shown in Fig. 4. At these frequencies, the 
influence of the continual areas is almost imperceptible. As a 
result of additional calculations, the curvilinearity in the forms 
of forced vibrations appears at high frequencies of 
disturbances that are not relevant for seismic vibrations.  

IV. FORCED RANDOM VIBRATIONS 

Let’s now suppose that the kinematic disturbance )( tu0 is 
a stationary random centered process. At the steady state of 
vibration, the output function )( tx,u will be a centered space-
time random field, stationary, centered in time and non-
uniform in the spatial coordinate. Let’s find the dispersion of 
displacements Du(x) of the bar cross-sections. 

When calculating the dispersions, let's use an algorithm 
and a program developed for harmonic vibrations in part III. 
We will now consider the issue in more detailed way. It is 
known that the continuous random centered stationary process 

(t),u0 given above, can be represented as a Fourier series [10] 

).tsinVtcosW()t(u iii
1i

i0 +=


=

              (27) 

where, Wi and Vi are uncorrelated random variables. 
Simple transformations, taking into account the relationship 
between the dispersion and correlation function of a stationary 
random process and the uncorrelated nature of the coefficients 
of the series (27), give  

.D)]t(u[D
1i

i0 


=
=                        (28) 

This result is shown graphically in Fig. 6 in the form of the 
so-called discrete line spectrum of dispersions. It turns out that 
there is a binary correspondence between dispersions and 
frequencies, i.e. a certain frequency is assigned to each 
dispersion. It is easy to see that the limiting transition from 
discrete values i to a continuum leads to a continuous 
spectral density function. In this case, the dispersion of 
random process of the input process u0(t) seems to be an 
improper integral 

D0 = 


−

 .d)(S                               (29) 

Now an elementary dispersion  d)(S  is assigned for 
each discrete frequency hashed in Fig. 7.  

 
Fig. 6. Point spectrum 

 

 
Fig. 7. Spectral dencisity 

 

If to take the elementary dispersion instead of the 
amplitude of the input harmonic process A0 (part III), then the 
output of the problem will be the elementary dispersion of 
deviations dDu(ωk,x). A subsequent summing up over ωk gives 
the dispersion of deviations Du(x).  

It has to be taken into account that the dispersion of input 
disturbances is distributed on the frequency axis ω according 
to Fig. 7 and put a continuous spectral density in accordance 
with discrete, calculated at an infinite countable set of positive 
frequencies 

S = {S1, S2, S3, …}, Si = S(ωi),   ωi  > 0. 

The entire variance of the input process is represented as 
the sum of the elementary dispersions of the harmonics that 
make up the random process. 



k
k0 .Sh2 D                                     (30) 

where, ω is a fine pitch of the frequency axis breakdown; 
factor 2 takes into account the left negative semi-axis of 
frequencies. 

Further calculations are carried out in the same way as it 
was described in the Example 2, namely, instead of A0, the 
elementary dispersion of disturbances hωSk. is inserted into the 
algorithm and the program. The results are summarized as the 
dispersion of an output displacement process. 

=
k

kiu .D)x(D  

Example 3. The examples given above are used. 

Let’s take a random process with hidden periodicity 
(characteristic frequency) as input kinematic seismic effects. 
Its spectral density is presented is follows:  

.;
]4)[

σ2S 222
22222

22
+=

+−


=

(
)(  

where,  is a broadband parameter,  is a characteristic 
frequency, σ is a standard deviation. Let us find the 
dependence of the dispersion of displacements Du(x) of 
random vibrations on the characteristic frequency of 
disturbances. In this connection the broadband ratio is 
relatively small. Then, the random disturbances are 
narrowband and close to the harmonic ones. As a 
consequence, the random vibrations of the bar should also be 
close to the harmonic vibrations discussed above. To this end, 
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having previous parameters, supplemented by the parameters 
of broadband and root-mean-square deviation,  

 = 0.1 sec-1;             = 10 cm, 

calculations are carried out at the increasing values of 
characteristic frequency  that coincide with the frequencies of 
deterministic disturbances Ωk in the Example 2 given above 

  = [ 5;    69;  132.5 ] sec-1. 

To make the comparison with the amplitudes of harmonic 
vibrations easier, the calculated dispersions are replaced by the 
standard deviations σu(x) and are presented in the form of 
diagrams in Fig. 8. Taking into account the fact that the 
standard deviations of a random process can take only positive 
values, it can be stated that the curves are identical in both 
qualitative and quantitative terms with the corresponding 
amplitude diagrams in Fig. 5. The reason is that for small 
values of the bandwidth parameter, as in the case of ( <<  ),  
the disturbing process is close to the harmonic one. As a 
consequence, all the conclusions drawn from Fig. 5 for the 
harmonic vibrations, remain valid, however, in terms of the 
characteristic frequency and standard deviations. The 
assumption of a close connection between deterministic and 
stochastic vibrations is thus confirmed.  

 

Fig. 8. Root-mean-square deviation 

V.  CONCLUSION 

1. In the epicentral area of earthquakes, the longitudinal 
vibrations caused by seismic disturbances may cause a serious 
danger to the strength and stability of vertical bars. 

2. The spectral pairs of the eigenvalues and functions of 
free vibrations are divided into two sets. The first set contains 
the pairs formed by discrete masses, and their number is equal 
to the number of such masses. The second set of infinite, but 
calculated power corresponds to the vibrations of the continual 
part of the structure. 

3. The preliminary consideration of the boundary problem 
of forced harmonic vibrations greatly simplifies the solution of 
complex seismic stochastic boundary value problems. 

4. The finite difference numerical method allows us to 
create universal algorithms and computer programs that easily 
adapt to a variety of complex problems related to vibrations of 
vertical bars: free, forced vibrations, vibrations of rods of 
variable cross-section, combinations of transverse and 
longitudinal vibrations, etc. 

5. A simple and effective method for determining the 
variance, which is the most important parameter of random 
vibrations, has been developed and implemented. 
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