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Abstract— The use of equations known in filtering theory to 

determine parameters of fluid motion through filters of various 
designs used in the oil industry to clean up the products from 
mechanical impurities is described. Analytical studies and 
calculations have been carried out to determine the speed of fluid 
motion in filters of frame-bar, ringed, perforating types, as well 
as through the packing of gravel filters. The selection of new 
boundary conditions simplifies the solution of the resulting 
differential equations; and the increase in the calculated 
parameters by 5-10% (Hou method) eliminates the probability of 
error. Thus, the obtained values of the filtering parameters allow 
to correctly choose the size and geometry of the filter elements. 

Keywords—  filtration flows, differential equatations, boundary 
conditions, average weighted potential, geometry of filter element, 
mechanical impurities 

I. INTRODUCTION 
In the practice of borewell operation, various types of 

filters are used: frame-rod, annular, perforated, gravel and 
others. 

To solve practical problems of calculating filtration flows 
in a borewell, a single method for all types of filter designs is 
used. It is called the average weighted potential method 

(AWP) [1], known in the technical literature as the Hou 
method [2]. Using this method, the value of debit 
underestimated by 5-10% is got. Therefore, it is enough to 
increase the result obtained by 7% to get as close as possible 
to the exact borewell flow rate. 

II. METHODS AND MATERIALS  
First the operation of the frame-rod filter is described. It 

consists of alternating vertical cracks and impenetrable walls 
(Fig. 1.). Obviously, by virtue of its symmetry, the surfaces of 
AD and BC will be the surfaces of the liquid current. The 
circular surface CD is an equipotential surface on which the 
potential of the filtration velocity will be φ= kР/µ, where k is 
the formation permeability; P is the reduced pressure; µ is the 
dynamic viscosity of the fluid. 

It is known that the potential of plane-parallel linear 
filtration in an isotropic medium with permeability k satisfies 
the Laplace equation in polar coordinates r,   [3, 4]: 
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Rods of the filter
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Fig. 1. Frame-core filter scheme used in water production borewells, rc – a borewell radius, β – half of the slit angle solution, α is half the impermeable wall 
angle solution, R – radius of the power loop 

 

The boundary conditions for the Laplace equation for a 
frame-rod filter are as follows: 
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The exact solution to this problem will be given by the 
conformal mapping method. However, we are interested in the 
Hou method, which is the same for all filter designs. 
Therefore, instead of the exact boundary condition (5), the 
approximate boundary condition will be considered (6) 
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where V0 – a certain, yet unknown, constant (the minus 
sign in (6) is because the fluid flow is directed to the center of 
the well). This constant will be selected so that the average 
value of the potential at the boundary BE satisfies the 
condition: 
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Condition (5) was fulfilled for the arithmetic mean value 
of the potential φ. 

The Laplace equation (1), satisfying the boundary 
conditions (2), (3), (4), (6), is a differential equation with 
separable variables and has the form: 
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0  – demensionless value. 

The unknown quantity V0 is found by calculating the 
potential value averaged on the BE arc. For this, the obtained 
value of potential (8) into formula (7) was substituted, from 
which we find that: 
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The flow rate of the borewell will find using the found 
value Vо according to the formula: 
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где N – количество щелей на 1 погонный метр, S – 
площадь щели, H – высота фильтра. 

where N – number of slots per linear meter, S  –  slot area, 
H  –  height of the filter. 

Advances in Engineering Research, volume 177

448






























































1 3

2sin

2
4

n n

Nn

n

cr
Rn

R
cr

n

cr
Rn

R
cr













  

   nNn    (10) 

The considered method suggests increasing the value of 
the Q output by 7%. 

An annular filter consists of alternating horizontal cracks 
and impermeable rings (Fig. 2.). By virtue of the symmetry, 
the surfaces AD and BC can be considered as current surfaces. 
The circular cylindrical surface CD is an equipotential surface, 
on it the potential of the filtration rate is equal to some given 
constant. Like the first part of the paper, the problem is 
reduced to solving the Laplace equation (11) with respect to 
the potential φ (r, z) in cylindrical coordinates [5]: 
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The boundary conditions in the region of ABCD (Fig. 2.) 
for equation (11) will be as follows: 
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Fig. 2. Frame-core filter scheme used in water production borewells: rc – borewell radius; lщ – half the height of the slit; lc – half the height of the impermeable 
wall; R – the radius of the power circuit; z0 = lщ + lc 

 

For an approximate solution of this problem, the AWP 
method is applied. For this, instead of the boundary condition 
(15), the boundary condition is taken (16): 
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where Vо – some yet unknown constant (the minus sign in 
(16) means that the movement is directed to the center of the 
borewell). 

The selection method is found so that the average value of 
the potential at the boundary AE satisfies the condition 
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The Laplace equation (11) satisfying the boundary 
conditions (12), (13), (14), (16) is solved by the method of 
separation of variables and we get: 
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where Iо, I1 – modified Bessel functions; KоK1 – 
Macdonald functions [6]. 

Substituting the value of potential (18) into formula (17), 
we get: 
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Using the obtained value of the filtration rate Vо, the flow 
rate is determined: 
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where N – number of slots, S – slot area, H – height of the 
filter,  
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Computational experiments showed that the flow rate 
increases with increasing filter duty cycle and approaches the 
asymptotic value at 20-30% duty cycle (Fig. 3). Therefore, 
there is no practical need for ringed filters with a higher duty 
cycle. In practice, indeed, they use filters of the ringed 
construction with a duty cycle from 20% to 30% [7]. 

For a perforation-type filter, the flow rate equation is 
obtained by analogous calculations considering its features 
(Fig. 3) 

The holes in the cylindrical body of this type of filters can 
have different geometric shapes and sizes. The problem of 
calculating the flow rate for the row arrangement of 
perforation holes is described. These holes have two 
perpendicular axes of symmetry, one of which is parallel to 
the axis of the borewell; and they include a rectangle, circle, 
ellipse, and others (Fig. 3). 

 

Perforations  

Fig. 3. The scheme of a filter perforated construction fragment with a row arrangement of perforations. On the left, the filter segment of an elementary flow area, 
BB1C1C – D area of the filter surface, OO1 – the axis of symmetry of the wellbore, h – the height of the segment, θ0 – the angle of the segment solution, σ – the 
fourth part of the perforation hole 

Due to this symmetry, the surfaces ABCD, A1B1C1D1, 
AA1B1B and DD1C1C are current surfaces. The circular 
cylindrical surface AA1D1D is an equipotential surface on 
which the potential of the filtration rate ϕ is equal to a given 
constant. As in the two previous cases, the problem reduces to 
solving the Laplace equation in cylindrical coordinates r, θ, z: 
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Initial conditions: 
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where constckP
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
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The final result for determining the flow rate (for the case 
of a rectangular perforation hole) will be: 
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where N – total number of perforations, S = Sσ rc – the area 
of the perforation, H – the height of the filter. 

III. RESULTS 
Computing experiments performed on the basis of the 

obtained formulas for the flow rates of borewells showed (Fig. 
4) that the flow rate of a perforation filter approaches the 
asymptotic value at a 20-25% duty cycle [8, 9]. Therefore, 
there is no practical need to create a perforation filter design 
with a duty cycle greater than 20–25%. This conclusion 
corresponds to the practice in which indeed the filters of this 
design are used with a duty cycle from 17% to 23%. 

According to the results, it is possible to recommend the 
use of perforated filters in practice. This design is 
characterized by high throughput at low duty ratio, which 
allows the filter to provide the necessary strength properties.
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Fig. 4. Comparison of filters of various designs. 

 

Filter of perforation design, quality of perforation holes 
around 32 holes, solution angle of holes – 2.87 degrees, hole 
height – 115 mm, number of holes per 1 meter vertically from 
1 to 8; 2. Ringed filter, slot height – 1.5 mm, number of slots 
per meter height from 1 to 666; 3. Frame-rod filter design, the 
angle of the slit solution –25 degrees, the number of slits is 
from 1 to 14. 

The calculations were carried out according to the 
formulas for determining the flow rates for frame-bar, ringed 
and perforation types of filters (borewell radius 100 mm, 
power supply radius 200 m) [10]. 

IV. CONCLUSION 
Filtering devices do not fully solve the problem of 

protecting the unit of electric submersible centrifugal pump, 
tubing from the harmful effects of mechanical impurities, 
mainly represented by quartz sand, loose particles of proppant, 
killing fluid, etc. When using such devices in order to prevent 
the formation of traffic jams at the bottom of a well, various 
containers and fishing chambers are often used [11]. 

However, the percentage of success of such measures 
depends on the concentration and fractional composition of 

suspended particles [12]. Therefore, the greatest effect on the 
protection of pumping and other equipment from mechanical 
impurities is achieved with a comprehensive solution to the 
problem. 

It will be important is the work to reduce the water-cut of 
production borewells, to control the selection, etc. 
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