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Abstract

This paper presents a linear transformation for low order nonlinear autonomous dif-
ferential equations. The procedure consists of a trajectory-based local linearization,
which approximates the nonlinear system in the neighborhood of its equilibria. The
approximation is possible even in the non-hyperbolic case which is of a particular in-
terest. The linear system is derived using an L2 norm optimization and the method
can be used to approximate the derivative at the equilibrium position. Unlike the
classical linearization, the L2 norm linearization depends on the initial state and has
the same order as the nonlinearity. Simulation results show good agreement of the
suggested method with the nonlinear system.

1 Introduction

This paper deals with low order systems of nonlinear autonomous ordinary differential
equations (ODEs) of the following form

dx

dt
= F (x (t))

x (t0) = x0

(1.1)

System (1.1) is an initial value problem, since the solutions are dependent on the initial
state. In the n-dimensional case, x ∈ IRn, F : IRn −→ IRn. The state of the system at any
time is given by n real variables x1(t), x2(t), ..., xn(t), and the phase velocity of the system
at point x = [x1, x2, ..., xn]T is defined by the vector fields F (x) = [f1(x), f2(x), ..., fn(x)]T .

It is of course well-known that the dynamics of nonlinear systems are much more com-
plicated than linear systems, and many problems that are completely solved for linear
systems are still open problems for nonlinear systems. Contrary to linear systems, non-
linear systems have qualitatively different regions of operation.

In general, linearization methods use the property of breaking the nonlinear system into
many operating regions and establish local approximations. The classical linearization is
based on Fréchet derivative at the equilibrium point. This method is the best approxima-
tion of the nonlinear system in the neighborhood of the equilibrium. This is true under the
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assumption of hyperbolicity. For non-hyperbolic equilibria, Hartman-Grobman theorem
states that the nonlinear system and its linearized version are not equivalent. Another
drawback for the classical linearization of nonlinear ODEs is that the system may contain
highly nonlinear terms. In this case the approximation error becomes important in the
neighborhood of the initial state, due to the fact that the classical linearization is a first
order approximation.

In order to overcome open problems in nonlinear systems theory, other linearization
methods with different approaches and different goals have been proposed. Jordan et al.
([2] and [3]) used a least square approach to derive the linear system when considering the
asymptotic behavior. Benouaz and Arino [4] suggested using a similar procedure to study
the asymptotic stability. Terrell [6] used a linearization along trajectory to determine the
local observability of nonlinear differential-algebraic equations.

New results on the linearization of the state equations in the critical case are carried out
in [5] and [7]. In [7] the study is restricted to the linearization of second order differential
equations, where an exact linearization method is discussed.

In this paper, the task is to associate an equivalent linear system to the nonlinear sys-
tem. The linear system is determined using an optimization technique. The method is
applied to the approximation of the nonlinear autonomous vector field and its derivative
at the equilibrium point. We also show that the linear equivalent system depends on the
initial state, which makes the main difference with the classical linearization. The con-
struction of local approximate normal forms from the method is also discussed. Unlike
some linearization methods such as feedback linearization or that suggested in [7]. The
method discussed in this paper is not an exact linearization. It is based on the mini-
mization of the error in an optimal way, while exact linearizations make use of a variable
transformation that is nonlinear in general. Exact linearization methods present the ad-
vantage of being ”exact”. However it is worth noting that not all nonlinear vector fields are
exactly linearizable. Furthermore in some situations it is difficult to find the appropriate
nonlinear variable transformation. On the other side, approximate linearizations can be
numerically implemented, where different numerical techniques can be used to calculate
the approximation.

2 L2 norm optimal linearization of non-linear ODEs

Consider the initial value problem given by equation (1.1); we define the equivalent linear
system by

dx

dt
= Ax (t)

x (t0) = x0

(2.1)

where A is a time independent matrix to be determined in order to minimize the residual
error vector

e = F (x) − Ax (2.2)

for a particular solution x(t; t0, x0) of the nonlinear system. There exist several possibilities
for the choice of the minimization criterion. In this paper we use an L2 norm minimization.
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One of the main advantages of using the L2 norm criterion is the existence of closed form
solution to the approximation. Let us define the following cost function

J (A) =

∫ xf

x0

‖e‖2 dx (2.3)

The unknown matrix A is obtained by the minimization of J (A), where x0 and xf are
the initial and the final states, respectively. Matrix A approximates the nonlinear system
along the particular trajectory x(t; t0, x0) that starts from x0 at time t0 and goes to xf

when t = tf . Thus matrix A varies for different initial and final states.
Note that the cost function (2.3) fails when the nonlinear vector field depends explicitly

on time. Our approach is different from other approaches that use least squares methods
([2], [3] and [4]) where the cost function was defined as

J (A) =

∫ +∞

0
‖e‖2 dt (2.4)

As a result, the determination of matrix A requires the knowledge of the nonlinear solution
x(t; t0, x0). Furthermore, the convergence of the method requires the spectrum of DF (x)
(DF denotes the Jacobian matrix of F ) near the origin to be negative, i.e., the method
does not converge near saddles or repellers. We will see that the procedure presented here
overcome this problem by considering the backward evolution of the nonlinear solution, and
does not need the knowledge of the solution x(t; t0, x0) for the computation of the linear
system. We assume without loss of generality that the equilibrium of the nonlinear vector
fields is situated at the origin. We restrict our study to the scalar and the two-dimensional
cases. The generalization of the method to higher order systems is straightforward but
requires the use of numerical integration methods.

2.1 Scalar case

Consider the case where the nonlinear system is given by the following scalar nonlinear
autonomous ODE

dx

dt
= f (x (t))

x (t0) = x0

(2.5)

In this case x ∈ IR, f : IR → IR, with f (0) = 0. We assume that f satisfies all conditions
for which the solution for system (2.5) exists and is unique.

Consider a particular solution x(t; t0, x0) of equation (2.5). The task is to find a linear
system for which the solution approximates x(t; t0, x0). The linear system has the following
form

dx

dt
= ax (t)

x (t0) = x0

(2.6)

where a is a real number to be determined. Consider a solution of the nonlinear system
which goes from x0 to xf in the time interval [t0, tf ]. We suggest determining the linear
system by the minimization of the cost function given by

J (a) =

∫ xf

x0

|f (x) − ax|2 dx (2.7)
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In order to obtain the minimum error, the derivative of J (a) with respect to a is set equal
to zero

∂J

∂a
= 0 (2.8)

from which we obtain

a =

∫ xf

x0
f (x)xdx

∫ xf

x0
x2dx

=
3

x3
f − x3

0

∫ xf

x0

f (x)xdx (2.9)

The real number a in equation (2.9) is defined as the L2 norm linearization of equation
(2.5) along the trajectory that starts from x0 and goes to xf . In fact a represents a sort
of average value along the trajectory and the line of slope a approximates the area under
f (x) in the interval x ∈ [x0, xf ]. As shown in equation (2.9) , the linear approximation is
a function of the initial and final states. Of course a does not exist when xf = x0.

2.2 Asymptotic approximation near the origin

Equation (2.9) is established for a finite time. In this section we are interested in the
approximation of the nonlinear system when time goes to infinity. There exist two cases

1. The trajectory starting from x0 tends to its equilibrium position when time tends
to infinity. The equilibrium point is an attractor for this particular trajectory, since
the equilibrium point is situated at the origin, equation (2.9) becomes

a =
3

x3
0

∫ x0

0
f (x)xdx (2.10)

2. The trajectory starting from x0 tends to infinity when time tends to infinity, the
equilibrium point is a repeller for this particular trajectory. The L2 norm lineariza-
tion is computed by considering the backward evolution of the solution. The linear
system obtained here is given by equation (2.10) also.

When x0 is small, a is defined as the L2 norm linearization of equation (2.5) near the
origin. In this case a represents a trajectory-based local approximation of the nonlinear
system near the origin.

Under the assumption that the nonlinear vector fields is continuously differentiable, it
is possible to write (2.10) as a function of the successive derivatives of the nonlinear vector
field. By using a simple integration by parts we get

a =
3

x3
0

[

x2
0

2
f (x0) −

∫ x0

0

x2

2
f (1) (x) dx

]

(2.11)

where f (1) is the first derivative of f . If we use twice the integration by parts, we get

a =
3

x3
0

[

x2
0

2
f (x0) −

x3
0

6
f (1) (x0) +

∫ x0

0

x3

6
f (2) (x) dx

]

(2.12)
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In general for N ≥ 0, we get

a =
3

x3
0

[

N
∑

n=0

(−x0)
n+2

(n + 2)!
f (n) (x0) −

∫ x0

0

(−x)N+2

(N + 2)!
f (N+1) (x) dx

]

(2.13)

where f (n) is the (n)th derivative of f . It is worth to note that the first terms in equations
(2.11), (2.12) and (2.13) are not dominant unless the successive derivatives of the nonlinear
vector field are equal to zero.

3 Properties of the approximation

3.1 Case when f is a linear vector field

In this case f is a linear vector field, i.e., f (x) = bx, b is a real number. From equation
(2.10) we get a = b, which means that the transformation of a linear system is the system
itself.

3.2 Relationship with the derivative of the nonlinear vector field

Let a (x0) be the L2 norm linearization of the nonlinear vector field in the neighborhood
of the origin which is an equilibrium point for f , an important property is the relationship
of a (x0) with the derivative at the origin. By considering the limit of a (x0) when the
initial state x0 tends to the origin, we obtain

lim a (x0) = f ′ (0) ;x0 → 0 (3.1)

This can be proven using L’Hopital’s rule in equation (2.10). If x0 is chosen very small,
a (x0) can be seen as a perturbation of f ′ (0), thus a (x0) enables us to approximate the
derivative of the nonlinear function at the origin.

3.3 Case when f is a polynomial function of degree N

The L2 norm linearization is written under the form of power series in the initial state
when the nonlinear vector field has a polynomial form. Assume that f (x) is polynomial
of degree N with the origin as an equilibrium point

f (x) = α1x + α2x
2 + α3x

3 + · · · + αNxN =
N

∑

n=1

αnxn (3.2)

For the L2 norm linearization, equation (2.10) gives

a (x0) = α1 +
3

4
α2x0 +

3

5
α3x

2
0 + · · · +

3

N + 2
αNxN−1

0 (3.3)

=

N
∑

n=1

3

n + 2
αnxn−1

0 (3.4)

= f ′ (0) + ã (x0) (3.5)
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where ã (x0) represents higher order terms. Clearly f
′

(0) = α1. The linearization is
written under the form of a polynomial of degree N − 1 in the initial state. The linearized
system is the following

dx
dt

=
[

∑N
n=1

3
n+2αnxn−1

0

]

x

x (t0) = x0

(3.6)

which has the same order (N) as the nonlinear function. Furthermore, the number of terms
depending on x0 in a (x0) is the same as the number of non-linearities in the nonlinear
vector field. The classical linearization method is a first order approximation, this results
in a significant drawback in terms of the error due to the approximation, where the quality
of the classical linearization degrades for highly nonlinear systems. For highly nonlinear
systems, it is more convenient to include more terms in the approximation. The L2 norm
linearization uses this property, since it has the same order as the nonlinear function, and
all nonlinear terms are taken into account. For this reason the method seems to be more
accurate for the approximation of highly nonlinear vector fields.

3.4 The case of non-hyperbolic equilibria

For the scalar case, a nonlinear hyperbolic equilibrium point is defined by an equilibrium
point xeq for which f ′ (xeq) = 0. The classical linearization fails in this case, and there
is no equivalence between the nonlinear system and its classical linearized system. We
assume that the nonlinear vector field presents a non-hyperbolic equilibrium at the origin.
Let us write f under the following form

f (x) = f
′

(0) x + g (x) (3.7)

with g (0) = 0, g′ (0) = 0. For the case of the non-hyperbolic equilibrium at the origin, we
have f

′

(0) = 0. In this case, equation (2.10) gives for the L2 norm approximation

a (x0) =
3

x3
0

∫ x0

0
g (x)xdx (3.8)

a (x0) is a function of higher order terms. Unlike the classical linearization, the approxima-
tion given by a (x0) does not vanish when the origin is a non-hyperbolic equilibrium point,
and the L2 norm linearization can approximate the nonlinear system in the non-hyperbolic
case, which is of extreme importance in dynamical systems theory. Furthermore, it is pos-
sible to establish a relationship between the linearization a (x0) represented by equation
(3.8) and the asymptotic behavior of the equilibrium.

3.5 Case when f is a symmetric function

When the nonlinear vector fields presents some symmetries, the linearization also presents
symmetries. From the formula of a (x0) it can be seen that:

(i) a (x0) presents an even symmetry i.e., a (−x0) = a (x0) when the nonlinear vector
field presents an odd symmetry.

(ii) a (x0) presents an odd symmetry i.e., a (−x0) = −a (x0) when the nonlinear vector
field presents an even symmetry.
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3.6 Case when the equilibrium is not situated at the origin

In the previous sections, the equilibrium point was assumed to be situated at the origin.
The method is not restricted to this case and can be applied to approximate nonlinear
vector fields in the neighborhood of an equilibrium point situated at xeq. From equation
(2.10), we have

a =

∫ y0

0 f (y + xeq) ydy
∫ y0

0 y2dy
(3.9)

where y0 is chosen near the origin. If we put y0 = x0 − xeq, then

a =
3

(x0 − xeq)
3

∫ x0−xeq

0
f (y + xeq) ydy (3.10)

and x0 is close to the equilibrium point xeq. The real number a given by (3.9) or (3.10)
approximates the nonlinear vector field near the equilibrium point situated at xeq.

The derivative at any equilibrium point of the nonlinear vector field can be computed
using the L2 norm linearization. This can be accomplished by considering the limit when
the initial state tends to the equilibrium, that is when x0 → xeq in equation (3.10) or
y0 → 0 in equation (3.9). By using L’Hopital’s rule, we get

lim a (x0) = f ′ (xeq) ;x0 → xeq (3.11)

3.7 Error due to the approximation and initial state

The error due to the approximation is smaller when the final state is close to the initial
state (approximation on short time intervals), this can be seen from the following inequality

∫ xf

x0

|f (x) − ax| dx ≤ (xf − x0) sup |f − ax| (3.12)

Similarly if we consider the approximation near the origin, inequality (3.12) becomes

∫ x0

0
|f (x) − ax| dx ≤ x0 sup |f − ax| (3.13)

This shows that the approximation near the origin is better for small x0.

4 Approximation in the two-dimensional case

In dynamical systems theory, the two-dimensional case is of an extreme importance. Sim-
plification of higher order systems and reduction to normal forms lead usually to two-
dimensional systems. This is the case of normal forms for elementary bifurcations for
example.

In this section we consider systems of equation (1.1), where x ∈ IR2, F : IR2 −→ IR2.
We assume that F satisfies all conditions for which the initial value problem has a unique
solution. Let us put for the initial states x (t0) = x0 = [x01, x02]

T , and xf1 = x1 (tf ; t0, x01)
and xf2 = x2 (tf ; t0, x02) for the final states. The equivalent linear system is given by
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equation (2.1) where A is 2 × 2 matrix. Matrix A is obtained by the minimization of the
following cost functions

J1 (a11, a12) =
∫ xf1

x01

∫ xf2

x02
|f1 (x1, x2) − a11x1 − a12x2|

2 dx2dx1

J2 (a21, a22) =
∫ xf1

x01

∫ xf2

x02
|f2 (x1, x2) − a21x1 − a22x2|

2 dx2dx1
(4.1)

where f1 and f2 are the components of F . After the differentiation of J1 (a11, a12) and
J2 (a21, a22) with respect to a11, a12 and a21, a22, respectively, we get in matrix form

A =

[
∫ xf1

x01

∫ xf2

x02

[F (x)] [x]T dx2dx1

] [
∫ xf1

x01

∫ xf2

x02

[x] [x]T dx2dx1

]

−1

(4.2)

where [x]T is the transpose of the state vector. Similarly to the scalar case, it is possible
to consider the asymptotic behavior. We consider the following cases

1. The spectrum of the Jacobian matrix of F (x) at the initial state (denoted by
DF (x0)) is negative, the trajectory starting from x0 is asymptotically stable and tends
to its equilibrium position. For an equilibrium point situated at the origin, equation (4.2)
becomes

A =

[
∫ x01

0

∫ x02

0
[F (x)] [x]T dx2dx1

] [
∫ x01

0

∫ x02

0
[x] [x]T dx2dx1

]

−1

(4.3)

Since the trajectory is asymptotically stable, matrix A presents negative spectrum.
2. The spectrum of DF (x0) is positive or presents a saddle structure, matrix A is

obtained by considering the backward evolution of the nonlinear solution.
It turns out that equation (4.3) is valid for all cases without dependence on the spectrum

of DF (x0).
Matrix A in equation (4.3) exists and is unique if the matrix given by

D =

[
∫ x01

0

∫ x02

0
[x] [x]T dx2dx1

]

(4.4)

is invertible. After integration, we get for matrix D

D =

[

1
3x3

01x02
1
4x2

01x
2
02

1
4x2

01x
2
02

1
3x3

02x01

]

(4.5)

Since det (D) = 7
144x4

01x
4
02, matrix D is invertible when x01 6= 0 and x02 6= 0. Note that

the procedure fails in general when x(t; t0, x0) is a periodic function.
It is also worth noting that it is possible to write the elements of A explicitly as a

function of the initial states and the nonlinear vector field. Consider the general case
where the nonlinear system is written under the following form

dx1

dt
= b11x1 + b12x2 + g1 (x1, x2)

dx2

dt
= b21x1 + b22x2 + g2 (x1, x2)

x (t0) = x0

(4.6)

where [g1, g2]
T = G : IR2 −→ IR2, G is the nonlinear part of F , with G (0) = 0, DG (0) = 0.

We put

B =

[

b11 b12

b21 b22

]

(4.7)
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Matrix B is simply the Jacobian matrix of F at the origin. Simple calculations allow us
to obtain

a11 = b11 −
12

7x3

02
x3

01

(

−4Γ11x
2
02 + 3Γ12x01x02

)

a12 = b12 + 12
7x3

02
x3

01

(

−3Γ11x02x01 + 4Γ12x
2
01

)

a21 = b21 −
12

7x3

02
x3

01

(

−4Γ21x
2
02 + 3Γ22x01x02

)

a22 = b22 + 12
7x3

02
x3

01

(

−3Γ21x01x02 + 4Γ22x
2
01

)

(4.8)

where

Γ11 =
∫ x01

0

∫ x02

0 g1 (x1, x2) x1dx2dx1

Γ12 =
∫ x01

0

∫ x02

0 g1 (x1, x2) x2dx2dx1

Γ21 =
∫ x01

0

∫ x02

0 g2 (x1, x2) x1dx2dx1

Γ22 =
∫ x01

0

∫ x02

0 g2 (x1, x2) x2dx2dx1

(4.9)

System (4.8) can be written as follows

A = B + Ã (x0) (4.10)

It is easy to see that matrix B is recovered in the L2 norm linearization matrix. The
other terms which are included in Ã result from the non-linearity. These terms make
the difference with the classical linearization, since they do not exist in the Jacobian
matrix. Furthermore, the elements of the jth row (j = 1, 2) of the L2 norm linearization
matrix depend on the jth component of the nonlinear vector field, this means that if the
jth component of the nonlinear vector field is linear, then the jth row in the L2 norm
linearization matrix is the same as the jth row in the Jacobian matrix of the nonlinear
vector field at the origin.

5 An extension of the scalar case

It is possible to generalize the linearization method described for the scalar case to some
special two-dimensional systems. Let us consider a particular case where equation (1.1)
can be written under the following form

dx1

dt
= f1 (x1, x2) = f̂11 (x1) + f̂12 (x2)

dx2

dt
= f2 (x1, x2) = f̂21 (x1) + f̂22 (x2)

x (t0) = x0

(5.1)

where f̂11 and f̂21 are nonlinear functions in x1, f̂12 and f̂22 are nonlinear functions in x2,
with f̂ij (0) = 0. We assume that the initial states are the same i.e., x01 = x02 = x̃0. This
is not a restriction since it can be accomplished by a simple shift of coordinates, and since
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the linearization depends on the initial state, another shift of coordinates can be used to
recover the initial [x01, x02]

T . By identification with the scalar case, we get

a11 = 3
x̃3

0

∫ x̃0

0 f̂11 (x1)x1dx1

a12 = 3
x̃3

0

∫ x̃0

0 f̂12 (x2)x2dx2

a21 = 3
x̃3

0

∫ x̃0

0 f̂21 (x1)x1dx1

a22 = 3
x̃3

0

∫ x̃0

0 f̂22 (x2)x2dx2

(5.2)

which can be written in matrix form as follows

A =
3

x̃3
0

∫ x̃0

0

[

F̂ (x)
]

[Ψ] (5.3)

where 3/x̃3
0 is a scalar,

[

F̂ (x)
]

and [Ψ] are 2 × 2 matrices given by

F̂ =

[

f̂11 f̂12

f̂21 f̂22

]

and Ψ =

[

x1dx1 0
0 x2dx2

]

Equation (5.3) is an extension of the scalar case, it presents a simpler version of the
approximation. For the existence of matrix A in equation (5.3) it is necessary that x̃0 6= 0.

It is worth noting that if the nonlinear vector field depends on external parameters, then
the linear system will be written as a function of these external parameters. This approach
can be used in the case where the nonlinear system presents bifurcations, especially for
the control of bifurcations.

The approximations obtained in (4.2) and (5.3) are different. In general, equation (4.2)
includes more terms than (5.3). Consider for example the following system which contains
only one non-linearity

dx1

dt
= b11x1 + b12x2

dx2

dt
= b21x1 + b22x2 + x3

2

x1 (t0) = x2 (t0) = x0

(5.4)

Using equations (4.2) and (5.3), we get the following systems, respectively

dx1

dt
= b11x1 + b12x2;

dx2

dt
= b21x1 +

[

b22 + 39
70x2

0

]

x2

x1 (t0) = x2 (t0) = x0
(5.5)

and

dx1

dt
= b11x1 + b12x2;

dx2

dt
= b21x1 +

[

b22 + 42
70x2

0

]

x2

x1 (t0) = x2 (t0) = x0
(5.6)

Equations (5.5) and (5.6) are slightly different. Note that the properties of the approx-
imation in the scalar case are also satisfied in the two-dimensional case. For example,
the two-dimensional L2 norm linearization tends to the Jacobian matrix of the nonlinear
vector fields at the origin when x0 → 0.
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6 Normal forms from the linearization

In this section, we discuss the construction of linear normal forms from the linearization
method. Normal forms play an important role in dynamical systems theory, where con-
siderable simplifications can be achieved. In general, normal forms are obtained using
variable transformations which are nonlinear functions of the state variables [8]. In the
general case, the suggested method does not allow to directly derive normal forms for
nonlinear systems. However it’s possible to derive normal forms from the approximation
(after linearization) by using variable transformations. An algorithm is suggested for this
purpose. Since the linearization discussed here is an approximate linearization with local
aspect, the normal forms obtained from the method are approximate normal forms with
local aspect. A comparison with normal forms obtained using the classical linearization is
discussed. Here we consider two normal forms

1. Jordan normal form

dz

dt
= Λz (6.1)

where Λ is a diagonal matrix

Λ =

[

λ1 0
0 λ2

]

(6.2)

Under this normal form the solutions are decoupled.

2. Controller normal form

dz

dt
= Cz (6.3)

with

C =

[

0 1
c1 c2

]

(6.4)

We associate systems (6.1) and (6.3) with an initial state z (t0) = z0 = [z01, z02]
T . We

first consider some special cases.

6.1 Special cases

There exist two special cases for which linear normal forms can be deduced from the
linearization without variable transformation. These cases are the following

(i) First case: the nonlinear system has the following form

dx1

dt
= b11x1 + g1 (x1)

dx2

dt
= b22x2 + g2 (x2)

(6.5)

with g1 (0) = 0 = g2 (0) and g
′

1 (0) = 0 = g
′

2 (0). This is a decoupled system, where
the solutions for x1 (t) and x2 (t) are independent from each other. Clearly, Jordan
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normal form can be obtained from the approximation directly by using equation
(2.10). In this case the normal form is

λ1 = b11 + 3
x3

01

∫ x01

0 g1 (x1)x1dx1

λ2 = b22 + 3
x3

02

∫ x02

0 g2 (x2)x2dx2
(6.6)

For simplicity we write equation (6.6) as follows

λ1 = b11 + ã11 (x01)
λ2 = b22 + ã22 (x02)

(6.7)

(ii) Second case: the nonlinear system has the following form

dx1

dt
= x2

dx2

dt
= b21x1 + b22x2 + g2 (x1, x2)

(6.8)

with g2 (0, 0) = 0 and ∂g2(0,0)
∂x1

= 0 = ∂g2(0,0)
∂x2

. In this case, the controller normal form
can be obtained directly from the linearization. By the minimization of the cost
function J2, we get for the normal form

[

c1

c2

]

=

[

b21

b22

]

+ [D]−1

[ ∫ x01

0

∫ x02

0 g2 (x1, x2) x1dx2dx1
∫ x01

0

∫ x02

0 g2 (x1, x2) x2dx2dx1

]

(6.9)

where matrix D is given by (4.4). Similarly to equation (6.6), we can write system
(6.9) as

c1 = b21 + ã21 (x01, x02)
c2 = b22 + ã22 (x01, x02)

(6.10)

Equations (6.5) and (6.8) can be seen as nonlinear normal forms, for which we associate
linear normal forms. For these two particular cases, we have z0 = x0 (since no variable
transformation is considered). Recall that for the linearization near the origin, the initial
state x01 and x02 are chosen small. An important remark about equations (6.7) and
(6.10) is that the normal forms depend on the initial states, where (λ1, λ2) and (c1, c2)
are represented as the sum of two terms, namely bij which represent the linear part of the
nonlinear vector and ãij which represent higher order terms. It is clear that normal forms
obtained using the classical linearization include only the bij terms.

6.2 General case

Both normal forms can be obtained from matrix A using linear transformations. We
suggest the following algorithm

1. Compute the L2 norm linearization of the nonlinear system. The obtained system

is dx
dt

= Ax =
[

B + Ã (x0)
]

x. As is already mentioned, the classical linearization is

given by dx
dt

= DF (0) x = Bx.
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2. Using a linear transformation x = Pz, calculate the normal form based on matrix A.
P is the similarity matrix. Similarity is an equivalence relation. Different standard
techniques can be used for this purpose. The system under normal form is the
following

dz

dt
= P−1APz (6.11)

Matrix P−1AP can be either equal to matrix Λ or C. The transformation P deter-
mines the type of the normal form.
For Jordan normal form

Assume that matrix A has independent eigenvectors, then it is diagonalizable, which
means that there exists an invertible matrix P such that Λ = P−1AP , where matrix
P is given by [9]

P = [v1|v2] (6.12)

v1 and v2 are the eigenvectors of A.
For controller normal form

Assume that the eigenvalues of A are different, then the controller normal form is
given by C = P−1AP . Matrices C and A are invariant under similarity transforma-
tions [10]. Thus matrices C and A have the same eigenvalues, Let λ1 and λ2 be the
eigenvalues of A, c1 and c2 are determined by solving the characteristic equation for
C and using λ1 and λ2.

Remark. When matrix A has repeated eigenvalues with both algebraic and geometric
multiplicity equal to 2, matrix Λ has a modified form

Λ =

[

λ1 1
0 λ2

]

(6.13)

In a similar way, if the eigenvalues of A are complex (in 2-D, the eigenvalues will be
complex conjugate), then matrix Λ has the following form

Λ =

[

α β
−β α

]

(6.14)

with λ1,2 = α ∓ β.

Matrix P−1AP can be written as follows

P−1AP = P−1
(

B + Ã (x0)
)

P (6.15)

= P−1BP + P−1Ã (x0)P (6.16)

This transformation includes two terms. The first term P−1BP represents the linear
normal form obtained from the classical linearization. The second term P−1Ã (x0)P
results from higher order terms in the nonlinear vector field. Thus the normal form
obtained from the L2 norm linearization can be seen as a generalization of the normal
form obtained using the classical linearization. This was also shown in the special cases.

The construction of normal forms based on the L2 norm linearization method is illus-
trated in the following examples.
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Figure 1. Vector field for Lienard equation near the origin (system 6.18)

Example. Local normal forms for Lienard equation
Consider Lienard equation, which arises in the study of nonlinear mechanics

dx1

dt
= x2

dx2

dt
= −h1 (x1)x2 − h2 (x1)

(6.17)

This system is already under nonlinear controller normal form. Our aim to show the
equivalence with the linear form. For h1 (x1) = x2

1, h2 (x1) = −x1, the system becomes

dx1

dt
= x2

dx2

dt
= −x2

1x2 + x1
(6.18)

and the L2 norm linearization is given by

A =

[

0 1
−2

7x02x01 + 1 − 5
42x2

01

]

(6.19)

Matrix A represents also the linear controller normal form for the system. For an initial
state equal to 1, we get

C =

[

0 1
−2

7 + 1 − 5
42

]

,Λ =

[

0.7877 0
0 −0.9068

]

(6.20)

A comparison between the nonlinear normal vector field and the linear normal vector
field is shown in figures 1 and 2. Clearly both systems have a saddle structure. This can
be also seen from matrix Λ.

Example. The following system represents a non-hyperbolic equilibrium point at the
origin

dx1

dt
= −x1 − x2

dx2

dt
= −x1 − x2 − x3

2

(6.21)
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Figure 2. Vector field for the linear normal form of Lienard equation 6.18, for x01 = x02 = 1

We get for matrix A

A =

[

−1 −1
−1 −1 − 3

5x2
02

]

(6.22)

Normal forms obtained from matrix A for an initial state equal to 1 are as follows

C =

[

0 1
−0.6 −2.6

]

,Λ =

[

−2.3440 0
0 −0.2560

]

(6.23)

In the case of non-hyperbolic equilibrium point, there is no equivalence between the
classical linearized system and the nonlinear system, thus it is not possible to construct
normal forms from the classical linearization. However this is possible using the L2 norm
linearization. The similarity between the nonlinear vector field and the L2 linearized vector
field is illustrated in figures 3 and 4.

In conclusion, the L2 norm linearization allows us to construct approximate linear
local normal forms, where numerical tools can be used to accomplish this task. These
normal forms can be seen as a generalization of the normal forms obtained from the
classical linearization, where higher order terms are taken into account. Also the L2 norm
linearization allows to obtain linear normal forms near a non-hyperbolic equilibrium point.

The method can be implemented numerically by integrating the nonlinear function.
In the two-dimensional case, it is possible to numerically implement the method using
a matrix language such as Matlab. Furthermore, it is possible to calculate analytically
the linear approximation using symbolic languages such as Maple. By using a numerical
algorithm, the method can be generalized easily to higher dimensional systems.

7 Numerical example

In this section we test the method and elaborate a comparison with the classical lineariza-
tion. We consider a model for Laser emission.
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Figure 3. Vector field for system 6.21 near the origin

Figure 4. Linear vector field for system 6.21, for x02 = 1
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7.1 Simplified Laser model

We consider a simplified model for Laser emission [1]. The state variable is the number of
photons p (t) in the Laser field, and its rate of change is given by the equation

dp

dt
= gain − loss

dp

dt
= GN (t) p − Kp (7.1)

where G is the gain coefficient, N (t) is the number of excited atoms, K is the inverse of
the life time constant of photons in the laser. The actual number of the excited atoms
depends on the number of photons in the Laser

N (t) = N0 − µp (t) (7.2)

Equation (7.1) becomes

dp

dt
= (GN0 − K) p − µGp2

p (0) = p0

(7.3)

We consider two cases. The first case corresponds to N0 <
K

G
, in this case the Laser acts

like a lamp, and the second case corresponds to N0 =
K

G
which represents a bifurcation

point.

7.1.1 First case: N0 <
K

G

For system (7.3) the classical and the L2 norm linearizations are respectively given by

dp

dt
= (GN0 − K) p; p (0) = p0 (7.4)

and

dp

dt
=

(

GN0 − K −
3

4
p0µG

)

p; p (0) = p0 (7.5)

A comparison between (7.4) and (7.5) shows that the L2 norm linearization includes
more terms than the classical linearization. For the numerical computations we take
GN0 − K = −3, and µG = 1. Figure 5 shows the solutions, both approximations are
in good agreement with the nonlinear system. Since it is difficult to express the error in
closed form, it is natural to use numerical computations, figure 6 shows the plot for the
relative error

error (t) =
|x̃ (t) − x (t)|

|x̃ (t)|

as a function of time, where x̃ (t) is the nonlinear solution and x (t) is the linear solution.
From figure 6 we have the following remarks
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Figure 5. Solution for p (t) when N0 <
K

G

1. The maximum error is about 2.5% for the L2 norm linearization and 7.5% for the
classical linearization.

2. The curves representing the error intersect at a critical point tc, for t < tc the L2

norm linearization presents better approximation, for t > tc the classical linearization
is better.

3. For both approximations, the error tends to zero uniformly when time goes to infinity.

Figure 7 represents the error as a function of the state p (t) and shows that the L2 norm
linearization gives better approximation for a wide range of p (t) especially when p (t) is
close to p0. The classical linearization gives better approximation when p (t) is close to
the origin, this confirms that the classical linearization is the best linear approximation
near the origin.

7.1.2 Second case: N0 =
K

G

The origin is a non-hyperbolic point for the nonlinear system. Thus the classical lineariza-
tion fails and the L2 norm linearization gives the following system

dp

dt
=

[

−
3

4
p0µG

]

p; p (0) = p0 (7.6)

Since the origin is non-hyperbolic, the classical linearization does not reflect the behavior
of the nonlinear system. As shown in figure 8, the L2 norm linearization presents good
approximation for the nonlinear system.

8 Conclusion

In this paper, we have presented an approximation for low order nonlinear autonomous
ordinary differential equations. We used a simple optimization approach to derive the
linear system. The main difference of the method with the classical linearization is its
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Figure 6. Error due to the approximations as a function of time

Figure 7. Error due to the approximations as a function of the solution

Figure 8. Solution for p (t) when N0 =
K

G
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dependence on the initial state; this makes the order of the method the same as the non-
linearity and allows the approximation of the nonlinear vector fields near a non-hyperbolic
equilibrium. The method can be used to approximate the derivative at any equilibrium
point. The construction of linear approximate normal forms using the method is also
discussed. Simulation shows good agreement of the the linear solution with the nonlinear
solution. Furthermore, a numerical comparison with the classical linearization shows that
the L2 norm linerization presents better approximation in a large neighborhood of the
initial state.
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