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Abstract

We introduce the g,k-generalized Pochhammer symbol. We construct I'y  and By x,
the q,k-generalized gamma and beta functions, and show that they satisfy properties
that generalize those satisfied by the classical gamma and beta functions. Moreover,
we provide integral representations for I'g  and By .

1 Introduction

The usefulness of the gamma and beta functions can hardly be overstated. However, recent
results coming from the combinatorics of annihilation and creation operators [7], and
the construction of hypergeometric functions from the point of view of the k-generalized
Pochhammer symbol given in [6], have impel upon us the need to introduce subtle, yet
deep, generalizations of the all mighty gamma and beta functions. The main goal of
this paper is to introduce a two parameter deformation of the classical gamma and beta
functions, which we call the q,k-generalized gamma and beta functions and will be denoted
by I'y r. and By j, respectively. I'; , and By}, fit into the following commutative diagrams

—1 —1
T, (t) Ty (t) Byi(t,s) = By(t, s)
k—»ll lk—d k—»ll lk—d
Pq(t) ?P(t) Bq(t,s) ﬁB(t,S)

Let us explain the notation used in the diagrams above. Recall that the Euler’s gamma
and beta functions are given by the following Riemann integrals:

o
I'(t) :/ e le ™ dx, t>0.
0

1 i1 ) 00 :Ct_l
B(t,s) = (1 —x)* dx = —d t 0.
(t,s) /0 (1 —x) T /0 152+ x, t,8>
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Our motivation to introduce the q,k-generalized gamma and beta functions is two-fold:
on one hand, Diaz and Pariguan in [6] defined a k-deformation, & > 0 a real number, of
the gamma and beta functions given by the following Riemann integrals

o Ik
Tk(t) = / e le™Fdr, t>0.
0

o
By(t,s) = / 71 +ﬂ:k)_t+Tsdac, t,s > 0.
0

On the other hand, De Sole and Kac in [2] introduced a g-deformation, 0 < ¢ < 1 a
real number, of the gamma and beta functions given by the following Jackson integrals

r,(t) = e/ t-lp—azg t>0 1.1
q()—0 x ¢, t>0. (1.1)

1
By(t,s) = /0 (1 - qx)ffldqx, t,s > 0. (1.2)

Although equation (1.2) has been known for about a century, the upper limit in formula
(1.1) has only been recently established by Koelink and Koornwinder [8], [9]: the factor
(1+11) was traditionally omitted yielding a divergent Jackson integral.

Our two-parameter deformations I'y ,, and B, ;. generalize both constructions above. We
show that our function I'y , is related to the q,k-generalized Pochhammer symbol [t],, , to
be defined in Section 2, in the same way as the classical I' function and the Pochhammer
symbol are related to each other. Our functions I'y ;, and B, are given by the following
formulae

t_q
1— qk; k
T,k(t) = % t>0.
— q k
51
1—¢)(1— qk k
By i(t,s) = ( ) . Ja , forall s,t>0.
(1- qt);,k

In Section 4, we give Jackson integral representations for the q,k-generalized gamma
and beta functions in terms of the q,k-analogue of the exponential function E7 ). These
are given by

AN
! (1 — qk—> dgx, t,s>0.
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Furthermore, in Section 5, we give other integral representations for I'y; and B,
using the g,k-analogue of the exponential function €q k- These integral representations are

given by
co/a(l—q")% z”
T,x(t) = c(a,t)/o e, tdgm, >0 (1.3)
t [oo/a o1
B, i(t,s) = c(a,t)[k]q * /0 — dgx, t,s>0, (1.4)
<1 + m)q,k

t t
a'[k]g L \* R
where ¢(a,t) = T+ [kyab (1 + [k?]qak>q7k <1 + [k]qa >q,k .
We shall see that formulae (1.3) and (1.4) are deeply related to the classical Jacobi
triple product identity and to the famous Ramanujan identity, respectively. We remark
that all our results are elementary and require little knowledge beyond a basic introduction
to g-calculus.

2 Basic results

In this Section we introduce the q,k-generalized Pochhammer symbol and also some basic
definitions that will be used in the rest of the paper. For completeness we review well-
known material that might be found, for example, in [1], [3], [4] and [5]. Let us begin by
introducing g-derivatives and Jackson integrals, see [10],[11].

Definition 1. Let us denote by Func(R, R) the real vector space of all functions from R to
R. Fix 0 < ¢ < 1 and consider the linear operators Iy, d,, 9, : Func(R,R) — Func(R,R),
given for all f € Func(R,R) by:

o I,(f)(z) = f(qzx), forall xz €R.

d I —
= dof = M. 0q(f) is called the g-derivative of the function f.
dex (¢—1)x

Definition 2. 1. The definite g-integral of a function f € Func(R,R) from 0 to b > 0
is given by

b o0
/O F@)dgr = (1— b S a"F(a™).
n=0
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2. The improper g-integral of a function f € Func(R,R) is given by
co/a n n
q q
[ e =0 - 0 ().
0 nez

Proposition 1. For any functions f,g € Func(R,R), the following properties hold:
o Oy(f+9) =94(f) + 94(9).
© 94(fg) = f04(9) + 14(9)0q(f).

0y(f)g — f94(9)

I,(9)(9)

o 9,(f(azx’)) = a[b]q(ﬁqbf)(axb):cb_l, for all a,b € R.

® 9,(f/9) =

b b
* 09~ F@g(@) = [ 10,0+ [ L@y, forall 0<a<b< 4.

Definition 3. Let 0 < ¢ < 1 be a fixed real number. Let us denote by [ ], : R — R the
1-4q"
(1-q)
The map [ ]; : R — R it is not an algebra homomorphism. Nevertheless, the following

identities are satisfied:
1. [s+t]qg = [s]q + ¢°[t]y, for all s,t € R. 3. [1]; =1

2. [st]g = [s]4t[t]g, for all s, € R. 4. [0], = 0.

map given by [t], = , for all t € R.

Next definition is fundamental for the rest of the paper. Indeed, our original motivation
for this work was to find integral representations for the q,k-generalized Pochhammer
symbol.

Definition 4. 1. Let t € R and n € Z*. The k-generalized Pochhammer symbol is

given by
n—1
(B = t(E+ k) (E+2K). . .(t+ (n— DE) = ] (¢ + jk).
2. The q,k-generalized Pochhammer symbol is given by ngl

[t]n,k = [t]q[t + k]q[t + 2k]q- St (n— 1)k]q = H[t "‘jk]q-

j=0
Notice that [t],, x — (t)nk as ¢ — 1. Let us introduce some notation that will be used
throughout the paper.
Definition 5. Let z,y,t € R and n € Z*

n—1

L@+ = [[(+ ™)
§=0
(1+2)55%
2. (1 +$)Z7k = 7(1 o q)’oo .
%)k

Lemma 1. Let z,s,t € R. Then (1 + x)‘;f = (1+2); (1 + qksx);k.
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3 Explicit formulae for I' ; and B,

The k-generalization of the gamma function introduced by Diaz and Pariguan in [6], is
univocally determined by the following properties:

1. Tx(t + k) =tTx(t), t>0. 2. T'p(k) = 1. 3. I'y is logarithmically convex.
Ty(t + nk
Properties 1 and 2 imply that (¢), 1 = %, forallt >0and n € Z™.
k

We define the q,k-generalized gamma function I'y ; by demanding it satisfies the q,k-
analogue of properties 1 and 2 above. Thus we assume that I'y ;. is such that: T'y ,(t+k) =
[t]qU'q.x(t) and I'g (k) = 1. This implies that,

n—1 n—1 ; kyn—1
i) — — (1 — ¢7%) B (1—-gq )ng
quk( k) - E[]k]q - P (1 _ q) - (1 _ q)n—l :

After the change of variable t=nk, one is lead to the following

Definition 6. The function I'y ;, is given by the formula

tq
(1- qk)kk
Fng(t) = ﬁ7 t > 0

Lemma 2. The infinite product expression for the function Iy} is given by
(1- qk)(‘fk
t_ 10
(1—gh)5(1—¢q)x !

Next proposition guarantees that I'y ;, indeed satisfies the q,k-analogue of properties 1
and 2 above.

Fng(t) = t > 0.

Proposition 2. The function 'y}, satisfies the following identities for t > 0:

1. Tyn(t+ k) = [HTqk(t).
2. Tyn(k) =1.

Fqk(t + nk:)

3.
Fq,k(t)

= [tlng, foralln e Z*.

q
1=a) (1-q)?
Dar(t+nk)  (L—dg, Tr(—gth) T
> Lo k(t) (1—qn jl_IO 1-¢q) Fo[t + jklq = [tk [
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Definition 7. The function B, (t, s) is given by the formula

Fq,k(t)rq,k(s)

B, r(t,s) =
q7k(78) Lokt +s) ’

for all s,t > 0.

Which in turns imply the next

s _q
(1-q)(1 -4},

Lemma 3. 1. By(t,s) = 5
(I =dq")g,

. forall s,t > 0.

(1=g)(1 = ¢")5.(1—¢°t),
(1- qs)ffk(l - qt);)?k ’

2. Byy(t,s) = for all s, t > 0.

Proof. Use Definition 6 and Definition 7. |
Proposition 3. The function By, satisfies the following formulae for s,t >0

1. By(t,00) = (1 — q)x Ty x(t).

—

tlq
[s

2. qu(t—i—k,s) = qu(t,s—i—k).

—

q

3. Bq’k(t, s+ k?) = Bq’k(t, S) — quq,k‘(t + kj, S).

s
4. Boi(t,s+ k) = %Bq,k(tﬁ)-
q
5. Byslt k) = —
. &\, = —.
! [tl,
L1
(1-— k)"il (1- qk)nkl(l - qk)kk
6 B%k(t7nk) - ( q) (1 — t)qn’ = (1 - q) r N 2. 5 nec Z+.
gk (1- qk);k
1-g)(1-¢"35 (-0 -d")% o
Proof. 1. By(t,00) = -0 = T e = (1-q)(1-¢") % -

Then By (t,00) = (1 — Q)%Fq,k(t)'

s5_1 §+1
, Baslttks) ([ — Mg A=)y (=g _ [t
By i(t,s + k) (1- qk)(ik(l — qu)qE,k (1—-¢q°) [s]q
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3 Bualts+k)— Byalt,s)  (L—aHF(1—g)F (1-gthF,
Bult+hs)  ~ q-gila-¢k a-a,
(1-¢°) (1-4¢'") s
T 0 a1
n Bok(t,s+k) (1- qk)q%,k(l - qt)q%,k
quk(t, s) (1— qt)i;:l(l . qk)qi,;l

n—1

H[Jk]q t_q

j=1 (1-g)(1- q’“)ff,kl (1- qk)Z,kl(l - qk);,k
By x(t,nk) = =5 - (1—¢)" ={1-q tin—1

Ok (1 qk)kk
7k +t]q 4,
j=0
t_
Letting n — oo, we get By (t,00) = (1 — ¢)(1 — qk)(ikl.
|

4 Integral representations for I';;, and B,

As promised in the introduction, in this Section we provide Jackson integral representa-
tions for our I'y, and B, functions, in terms of the g,k-analogue exponential function
EZ .. Recall that
q?
O _kn(n—1)/2,.n
q z k
o= 2 T = U g
n—0 qk.

Theorem 1. 1. The function T'y 1 (t) is given by the following Jackson integral

(Ll )% gk
T, x(t) :/ () ?E M dgr, > 0. (4.1)
O )
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2. The function By, is given by the following Jackson integral

R

AN
1 (1 - qk—> dqx, t,s>0. (4.2)
Kl / ¢ 1

¢t rlE]
Byi(t,s) = [kly ¢ /
0

In order to prove Theorem 1 we begin by denoting the right hand side of (4.1) by f,m,
and the right hand side of (4.2) by B, k. Let us check that I'y ; and B, satisfy properties
analogue to those stated in Proposition 2 and Proposition 3 for I'y j, and By i, respectively.

Proposition 4. The function Ty satisfies the following identities for t > 0

(g )i - .
— 1— T*lo B
Proof. 1. Tyr(k) = — ; (=) Oy <Eq[f€,]§q> dqx =1, since EqJ;_qk = 0, and Eg,k =

2. Using g-integration by parts

e

k_k

[k]q
_ 1—oF) 2z
T u(t+k) = / (55) L S
0

(L )% zk
o (1—q®) t “Tklq
= —/0 x' 0y <Eq7k dyx

Proposition 5. The function Eq,k satisfies the following formulae for s,t >0

Ty k(t).

1. Byy(t,o00) =(1—gq)

o

_ n
2. Bng(t + k, S) = —[S]]q Bng(t, s+ k?)
q

3. Bq,k(t’ s+k)= Bq,k(ta 5) — quq,k(t + K, s).

4. Byi(t,s+k)= %

By (t,s).
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_ 1
5. Byp(t, k) = —.
! [ty
L1
— (1= g™t (1=a")y L =d")),
6. Bg(t,nk) = (1— Q)ﬁ =(1-gq) & T L neZt.
gk (1_qk);k

Proof. 1. Using the change z = (1 — qk)%y, (4.4) is obtained from (4.3).

1
_ I St
B, (t,00) = %hk/ tlE “q Ma g (4.3)
[k]q E qkyk
t (1- 11
= (1—q)* / @ t g q7 Hla dqy (4.4)
= (1—q)*Tyul
. t 3 B S\
2. Using the formula 9, <1 —i—b[M > P [[kt]}q“ bak1 <1 —i—bqkm>q7lC in (4.5) we have
(4.6)
[]% 2—1
- i k kN &~
Boilt+k,s) = [kl;* 1/ " gtk (1—q”—> dyx (4.5)
0 [k]q q,k
t i s
% rlklE kN &
= LA / ’ z'o, <1 — a:_) dgx (4.6)
[slg Jo [k]q q.k
[ty
= — Byt k
[S]Q Q,k( ;8 + k)

3. Using Lemma 1, we get

— _t [
Boattos +1) = W, |
0

4. Tt is easy to check that B, k(t,s + k) = [S]q} B, k(t,s) using the properties 2 and 3
above.
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1

_ o mk
5. Byk(t,k) = [klq k/ et =
0 [tlg

6. Use items 4 and 5 of this proposition.

Proof. Proof of Theorem 1. By Proposition 3 part 1, B (t,00) = (1 — q)%F k(t), t>
0. Also, it follows from Proposition 3 part 6 that B (t,00) = (1 — q)ifq,k( t), t > 0.
Therefore,
Fq’k(t) = Fq’k(t), t > 0.
Items 3 and 4 of Proposition 5 imply that
By k(t,s) = Byk(t,s), for all t >0 and s =nk, withneZ".
We would like to prove that

= Ly r()lqk(s)
B t — 9q, q,
qyk( ’S) Fq’k(t+8) )

By Lemma 2 we have that

LorTqn(s) _ (1= @)1 — )G (01— ¢
Lort+s) (1—q)q7k(1—q )%

for all s, > 0.

By the definite Jackson integral and Definition 5 item 2, we obtain
1

- G EN 7
Byi(t,s) = [klg ’“/ ’ 2t <1 —qu—> dqx
0 [k]q q,k
= n n 71
= (1-9q))_ ¢"(1— ")k,
n=0

00 (1 k(n—i—l))q

S M e

n=0 q,
So, we have to show that
-9 -¢gEl-¢")5 & a0 gk )
(1= q")g% (1 —a°)gs —(1-9) (1 —gstnk)es
qvk qvk n=0 q,k

Making the changes u = ¢' and v = ¢*, we reduce our problem to prove that

(1-q¢)(1-¢q )q k(l - UU) . n k(nﬂ))q,k
(I —u)g%(1 =) Z b (1— ank)

(4.7)

Now, both sides of equation (4.7) are formal power series in q with rational coefficients
in v and v. Since we already know that they agree for an infinite number of values, namely
u=¢q" and v = ¢°, where t > 0 and s = nk with n € Z1, the desired result holds. |
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5 Other integral representations

In this Section we provided Jackson integral representations for the I'y; and B, using
the q,k-analogue of the exponential function e;““,k. We remark that in an earlier version of
this paper we took the upper limit in our integrals to be oo leading to divergent integrals.
The correct upper limit in our definition was clear to us only after reading [2]. Recall that

=2 1
= 2l T = (- e
n=0 " ¢ q q.k

Definition 8. The function ’yéalz, a > 0, is given by the following Jackson integral

k

co/a(1-¢"*) _
’y(a,z(t) = / i le l[:]q dgx, t>0.
0

Sl

q,

(a)

Next proposition shows that Vg k satisfies properties similar to those given in Proposi-
tion 2 for the I'y . function.

Proposition 6. The function ’yéalz satisfies the following formulae for a,t > 0

1A\ (k) = 1.
2. 48+ k) = g 0.
3. 7;?/2 (nk) = qfkn(nfl)/zf%k(nk), for every n € Z+.

k

so/a(1—g") _ gk co/a(1—gF)k _ b
Proof. 1. 'yé?,z (k) = /0 xkileqvl[:]q dgx = —/0 Oq <eq’lik]q> =1.

Sl

2. (a) L, peeaat
lern) = 0t (2)'8, (k)d

3. From items 1 and 2 above, we have that

n—1
7;?12(”"5) — q—kn(n—l)/Q H[]k]q — q_kn(n_l)/QF%k(nk).
j=1
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Definition 9. The function ﬂéalz, a > 0, is given by the following Jackson integral

(@) ¢ [oo/a pt—1
Bt s) = [klg * /0 e, s >0

(1+ [qu) k

Proposition 7. The function B( & satisfies the following formulae for a,t,s >0

1. B9(t,00) = (1 - )7 (0).

a — t a
2. 6{57,2(75—#/@ s)=gq t[t [_i_]‘;]qﬁé’lz(t, s).

3. ﬁ(g(fg (k,s) =

[s]q

a [5] a
4. B (s + k) = [H"S]qﬂ;,,i(t,s)-

5. ﬁ(g(fg (nk,s) = ¢ *=D/2B_,(nk,s), for alln € Z*.

Proof. 1. Using the change z = (1 — qk)%y, (5.2) is obtained from (5.1).

-~ oco/a =z
Bitoo) = Wt [T ate, W 4 (51)

yk

=

—F £ co/a(l=a") t—1_ ¥l
= [k]q (1—q)k/0 Y e n gy (5.2)

= (- ).

k o\ S s—1 s
1+a— [ks]gaz®~1( 1+aqg® zt [kt] brk~1(1+a
2. Using the formula 9, ( ( Uﬂq)q,k> = ( g ) ’ ( [k]“)

(1+b%>2k k]q(l—i—bq ) klq (1+b[§] )Hl
Ky * /
(a) q —t eola t 1
t+k = Oy | ————1d
ﬁq,k( +k,s) [t—i— ] w4 /0 (qx) q Tts qx
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3. Using the identity 9, ﬁ = —%, we get
(1+ [i]q>q,k [kla (1+[k]q>
1 [oo/a 1 1
- [0 —Ja L
oh [slg Jo ! ! [s]q

. s ks—1Lg k(s+1) 1
4. Using 0, Lt — —[k]ql — bkt — ks az :
q ([k} (1+b[i] ) ) [k] ( ([ ]q [ ]Q)

t
" Kl (k] F oS oo/a 1 t+s
A = B [T, e | dae
q 0

5. Using property 2 above recursively
1 s_
Q=) ="y 1 —g"™)F,
(1— ¢ ) (1 —gm) 1"

k) = g0

Lemma 4. Let s,t € R and n € ZT, we have the following identities

(1+ x)s+t (1+ m) (1 + qktx)

1. (14 "), = 1+2):, - (1+w)q,k
k\n
2. (14+q¢ ")y, = (1+2), %

Next theorem provides our second integral representation for the functions I'y; and
B k.
q?

Theorem 2. For all a,s,t > 0 we have:

1. Tyu(t) = cla, )\ ).
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2. Byylt,s) = c(a, )AL (¢, ).

Where )
a'[k]g 1 k A%
t) = 1 1+ [k .
@) = T k), o ( * [kz]qak>q,k < * [Flga >q,k
: [s] a [s] a
Proof. Since both B, x(t,s + k) = ? +i]qu,k(t, s) and 5;,12 (t,s+ k)= T qs]qﬁc(hlz (t,s).
It is clear that if c¢(a,t) is such that c(a,t ﬁ(a) t,s) = By (t,s), then c(a,t) must be
q,k q,
-1
oo/a t
/ g & v dgx
o i (o)
[*g ) o
(a) 1 [o/a at .
We know that 3, (¢, k) = . ), Oy t I dqz. Thus by definition
q - T
[K]g* (1 + m>q7k
of g-derivative and the Jackson integral, we have:
oo/a ) 1 ) q"
; 0¢(Fy)dgz :7}1_{20Fk o —JI_)H;OFk o) (5.3)

where the limits are taken over integers.

o\ -1
From (5.3), we obtain: 3 (1, k) = % lim <[k‘]q}i (ag")’ <1+ [k](%y ) :
q k

n—oo aq”) q
b

[t]q
Using Lemma 4 part 2 in equation (5.4) we have

cla,t) = [k]Fa’ lim ¢™ <1+ a - > (5.4)

]
! [k]qa & n—oo (1 + [k]qaqu*t);‘,k

t
at -7

1+ [k]ga® <1 " ﬁ); <1 - [k]qak)q,k

Thus, By (t,nk) = c(a,t)ﬂéag (t,nk), for all n € Z*. Moreover, proceeding as in The-
orem 1 we can prove that part 2 of Theorem 2, i.e., one can show that both sides of
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equation

t [oo/a o1
By i(t,s) = cla,t)[klg * / ——=dgr, t,5>0,
0 zk )k
(157,
after the appropriated changes, are formal power series with rational coefficients in the
correct variables. Part 1 follows from part 2 using properties Béalz (t,00) = (1 — q)%’yc(]alz (t)

and B\)(t,00) = (1 - q)*T\%) (). m

Below we include an alternative prove of this Theorem 2. Let us first give a proposition
with further properties of the function c(a,t).

Proposition 8. 1. lin% cla;t) =1 for alla>0 and t € R.
q—)

2. lirr(l]c(a,t) =a'+a"" foralla>0and 0 <t <1.
q—

3. c(a,t) satisfies the following recursive formula: c(a,t + k) = q'c(a,t), for all a > 0
and t € R.

4. Fora >0 and n € Z*, we have that c(a,nk) = gknn=1/2,

5. O4c(a,t) =0, for alla >0 and t € R.

Proof. 1. Obvious.

t

2. In the limit ¢ — 0, c(a,t) goes to (1+ ai,c) (14 aF) = at +ar" for all a > 0
and t € R.
k t
3. c(a,t + k) “ <1 i [kﬁza’“) t

c(a,t) = ]q(l + [k]qq~ta®) -4

4. Immediate from item 3 and the fact that c(a,0) = ¢(a, k) = 1.

5. To show that dyc(a,t) = 0, it is enough to check that c(qa,t)=c(a,t).
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([k]qq kqk + 1) (1 + [k]qqkitak)
(1+ o) (s + 1)
Moreover dyc(a,t) =0, for all t € R.

It is easy to check that ¢* = 1, concluding that c(qa,t)=c(a,t).
|

Theorem 2 may also be deduced from the following chain of arguments. First, notice
that using the Jackson integral, Definition 5 item 2 and the infinite product expression for
the function B, given in Lema 3 part 2, one can show that Theorem 2 part 2, that is,

¢ [oo/a CCt_l
By i(t,s) = cla,t)[k]qg * / —qux, t,s >0,
0 1 + )T
< TKla ) .k

is equivalent to the following relation

(i), OO0 () (14 )
@ (i), ()T 0 a0 -0 - a0

Making the changes u = —1/[k],a*, v = 4 and z = g, we see that Theorem 2 part 2

[/ﬂ
is equivalent to the famous Ramanujan identity.

Z x"(1— u)gk _ (1- qk)f;"k(l - U/u)g?k(l - W)ffk (1 B qk/ux):)k
( .

nel 1= U)ZJ.C (- U)q (1= qk/U);’?k(l - x)g?k(l - v/uw);’f’k

Similarly, using the definition of Jackson integral, Definition 5 part 2, the infinite

T

product expression for e;,LT]q and Lemma 2, one can show that Theorem 2 part 1, that is,

oo/a(1-¢") _ak
Qﬂﬂ:dmw/ 2 le, Mdgx, >0,
0 b

is equivalent to the following triple identity

(1), <1+q—tk>w (HM) = (1) (1M )5 3 gt (1+ ! k)
’ [Klqa® /& q @k ’ e [k]qa

Making the change x = —2—; and letting a — 0 in (5.5), we obtain

q T )k

ne” qvk )

which is the Jacobi triple product identity.
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